期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Study on Description Methods of Sediment Transport Modulus in Small Watersheds
1
作者 Zhiguang LI Liyi ZHAO 《Meteorological and Environmental Research》 CAS 2021年第5期50-54,共5页
[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]F... [Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]Four methods,including the statistical eigenvalues,depolarized arithmetic mean,frequency of erosion intensity and box-whisker plots were applied into calculation of sediment transport modulus in four small watersheds,and then the results of the methods were compared to to filter a method with the widest applicability and scientific validity. [Result] The statistical arithmetic mean and median could hardly represent the concentration and general level of multi-year sediment transport modulus. Although the depolarized arithmetic mean had the tendency of reflecting the general level of data,it lost the extreme value and its information for making decision. The frequency of erosion intensity grade reflected the distribution of data in intensity classification. Box-whisker plot could show the concentration,dispersion and the number of abnormal data. [Conclusion] Multiple methods can be combined to comprehensively and objectively characterize the multi-year sand transport modulus due to their advantages and disadvantages. Additionally,box-whisker plot has good objectivity and applicability in displaying the multi-year data of small watershed. 展开更多
关键词 Small watershed sediment transport modulus General situation of many years Description methods Multi-year average Box-whisker plot
下载PDF
Changes in sediment discharge in a sediment-rich region of the Yellow River from 1955 to 2010: implications for further soil erosion control 被引量:7
2
作者 JuYing JIAO ZhiJie WANG +2 位作者 GuangJu ZHAO WanZhong WANG XingMin MU 《Journal of Arid Land》 SCIE CSCD 2014年第5期540-549,共10页
The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield bas... The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a). 展开更多
关键词 sediment delivery modulus(SDM) Yellow River hydrological station(s)-controlled sub-area soil and water conservation
下载PDF
Scale effects of eroded sediment transport in Wujiang River Basin, Guizhou Province, China 被引量:4
3
作者 WANG Yao HOU Li-sheng CAI Yun-long 《Journal of Groundwater Science and Engineering》 2017年第2期182-192,共11页
In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect proble... In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin(WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index(NDVI) data from Global Inventory Modeling and Mapping Studies(GIMMS) or Advanced Very High Resolution Radiometer(AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km^2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method. 展开更多
关键词 sediment transport modulus Scale effect Soil erosion Wujiang River Basin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部