Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach...Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach of the Yellow River(NMRYR), northern China are controlled by a complex set of factors/processes, mainly including four sets of factors:(1) aeolian sediments from deserts bordering the main stream;(2) inflow of water and sediment from numerous tributaries;(3) impoundment of water by reservoir/hydro-junction; and(4) complex diversion and return of irrigation water. In this study, the 1-D flow & sediment transport model developed by the Yellow River Institute of Hydraulic Research was used to simulate the flow and sediment transport within the NMRYR from 2001 to 2012. All four sets of factors that primarily control the flow and sediment transport mentioned above were considered in this model. Compared to the measured data collected from the hydrological stations along the NMRYR, the simulated flow and sediment transport values were generally acceptable, with relative mean deviation between measured and simulated values of 〈15%. However, simulated sediment concentration and siltation values within two sub-reaches(i.e., Qingtongxia Reservoir to Bayan Gol Hydrological Station and Bayan Gol Hydrological Station to Toudaoguai Hydrological Station) for some periods exhibited relatively large errors(the relative mean deviations between measured and simulated values of 18% and 25%, respectively). These errors are presumably related to the inability to accurately determine the quantity of aeolian sediment influx to the river reach and the inflow of water from the ten ephemeral tributaries. This study may provide some valuable insights into the numerical simulations of flow and sediment transport in large watersheds and also provide a useful model for the effective management of the NMRYR.展开更多
Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the...Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.展开更多
基金financially supported by the National Natural Science Foundation of China(51579113,51309111,51309113)
文摘Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach of the Yellow River(NMRYR), northern China are controlled by a complex set of factors/processes, mainly including four sets of factors:(1) aeolian sediments from deserts bordering the main stream;(2) inflow of water and sediment from numerous tributaries;(3) impoundment of water by reservoir/hydro-junction; and(4) complex diversion and return of irrigation water. In this study, the 1-D flow & sediment transport model developed by the Yellow River Institute of Hydraulic Research was used to simulate the flow and sediment transport within the NMRYR from 2001 to 2012. All four sets of factors that primarily control the flow and sediment transport mentioned above were considered in this model. Compared to the measured data collected from the hydrological stations along the NMRYR, the simulated flow and sediment transport values were generally acceptable, with relative mean deviation between measured and simulated values of 〈15%. However, simulated sediment concentration and siltation values within two sub-reaches(i.e., Qingtongxia Reservoir to Bayan Gol Hydrological Station and Bayan Gol Hydrological Station to Toudaoguai Hydrological Station) for some periods exhibited relatively large errors(the relative mean deviations between measured and simulated values of 18% and 25%, respectively). These errors are presumably related to the inability to accurately determine the quantity of aeolian sediment influx to the river reach and the inflow of water from the ten ephemeral tributaries. This study may provide some valuable insights into the numerical simulations of flow and sediment transport in large watersheds and also provide a useful model for the effective management of the NMRYR.
基金Project(51274251)supported by the National Natural Science Foundation of China
文摘Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.