[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]F...[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]Four methods,including the statistical eigenvalues,depolarized arithmetic mean,frequency of erosion intensity and box-whisker plots were applied into calculation of sediment transport modulus in four small watersheds,and then the results of the methods were compared to to filter a method with the widest applicability and scientific validity. [Result] The statistical arithmetic mean and median could hardly represent the concentration and general level of multi-year sediment transport modulus. Although the depolarized arithmetic mean had the tendency of reflecting the general level of data,it lost the extreme value and its information for making decision. The frequency of erosion intensity grade reflected the distribution of data in intensity classification. Box-whisker plot could show the concentration,dispersion and the number of abnormal data. [Conclusion] Multiple methods can be combined to comprehensively and objectively characterize the multi-year sand transport modulus due to their advantages and disadvantages. Additionally,box-whisker plot has good objectivity and applicability in displaying the multi-year data of small watershed.展开更多
This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the ...This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.展开更多
Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate...Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate- bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens' internal friction angle decreases while the cohesion increases.展开更多
The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield bas...The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a).展开更多
In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect proble...In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin(WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index(NDVI) data from Global Inventory Modeling and Mapping Studies(GIMMS) or Advanced Very High Resolution Radiometer(AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km^2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method.展开更多
基金Supported by National Key R&D Plan Topics (2016YFC0503705)Major Project of High-resolution Earth Observation System (08 Y30B07 900113/15)Dynamic Monitoring Project of National Water and Soil Loss and Optimization Layout Project of National Water and Soil Conservation Monitoring Point (126216229000200002)。
文摘[Objective]This study aimed to clear the advantages,disadvantages and applicability of various analysis methods to assess sediment transport modulus in small watersheds using the multi-year observation data. [Method]Four methods,including the statistical eigenvalues,depolarized arithmetic mean,frequency of erosion intensity and box-whisker plots were applied into calculation of sediment transport modulus in four small watersheds,and then the results of the methods were compared to to filter a method with the widest applicability and scientific validity. [Result] The statistical arithmetic mean and median could hardly represent the concentration and general level of multi-year sediment transport modulus. Although the depolarized arithmetic mean had the tendency of reflecting the general level of data,it lost the extreme value and its information for making decision. The frequency of erosion intensity grade reflected the distribution of data in intensity classification. Box-whisker plot could show the concentration,dispersion and the number of abnormal data. [Conclusion] Multiple methods can be combined to comprehensively and objectively characterize the multi-year sand transport modulus due to their advantages and disadvantages. Additionally,box-whisker plot has good objectivity and applicability in displaying the multi-year data of small watershed.
基金National Natural Science Foundation of China under Grant Nos.51978334 and 51978335。
文摘This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.
基金supported by the National Natural Science Foundation of China (11102209 and 11072245)the National High Technology Research and Development Program of China (863)the Key Program of Chinese Academy of Sciences (KJCX2-YW-L02)
文摘Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate- bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens' internal friction angle decreases while the cohesion increases.
基金funded by the Major Programs of the Chinese Academy of Sciences (KZZD-EW-04-03-04)the National Science-technology Support Plan Project (2006BAD09B10)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-406)
文摘The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a).
基金generously supported by Project of National Natural Science Foundation of China (41641011)National Geology and Mineral Resources Survey and Assessment Program (DDT0160087)
文摘In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin(WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index(NDVI) data from Global Inventory Modeling and Mapping Studies(GIMMS) or Advanced Very High Resolution Radiometer(AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km^2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method.