On the basis of the new type Boussinesq equations (Madsen et al., 2002), a set of equations explicitly including the effects of currents on waves are derived. A numerical implementation of the present equations in o...On the basis of the new type Boussinesq equations (Madsen et al., 2002), a set of equations explicitly including the effects of currents on waves are derived. A numerical implementation of the present equations in one dimension is described. The numerical model is tested for wave propagation in a wave flume of uniform depth with current present. The present numerical results are compared with those of other researchers. It is validated that the present numerical model can reasonably reflect the nonlinear influences of currents on waves. Moreover, the effects of inputting different incident boundary conditions on the calculated results are studied.展开更多
In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic ...In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave proDaRated to a coastal zone from different directions.展开更多
The Beibu Gulf is at an important geographical location and rich in gas, oil and biological resources. The observed currents showed that the current in the upper layer was opposite to that in the lower layer in boreal...The Beibu Gulf is at an important geographical location and rich in gas, oil and biological resources. The observed currents showed that the current in the upper layer was opposite to that in the lower layer in boreal winter in the northern Beibu Gulf and it was northeastward in the lower layer. This northeastward current was reproduced by a 3 D baroclinic model in this study. It's found that the counter-wind deep current(referred to as ‘CWDC' hereinafter) strengthened from September to November but weakened from December to the following February. A closed meridional circulation in vertical direction was found in the northern Beibu Gulf, including CWDC, surface southwestward current, an upwelling, and a downwelling. The temporal variation process of the meridional circulation was similar to that of CWDC, with strength and range stronger in November and December than in other four months. Similar to the variation process of CWDC, the monsoon wind changed from weak easterly wind in September to strong northeasterly wind in November and December, and it was transformed into weak southeasterly wind in February again. The sensitive experiments showed that CWDC and the meridional circulation were controlled by the monsoon wind and were adjusted by heat flux-and tide-induced mixing, respectively. According to the momentum balance equation, it can be revealed the counter-wind deep current is a compensation current which is induced by the surface elevation gradient balanced by the Coriolis force, vertical diffusion and baroclinic pressure gradient.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.40676053)theNational High Technology Research and Development Program of China (863 Program,Grant No.2006AA09A107)the Science and Technology Committee of Shanghai (Grant Nos.08DZ1203005 and 07DZ22027)
文摘On the basis of the new type Boussinesq equations (Madsen et al., 2002), a set of equations explicitly including the effects of currents on waves are derived. A numerical implementation of the present equations in one dimension is described. The numerical model is tested for wave propagation in a wave flume of uniform depth with current present. The present numerical results are compared with those of other researchers. It is validated that the present numerical model can reasonably reflect the nonlinear influences of currents on waves. Moreover, the effects of inputting different incident boundary conditions on the calculated results are studied.
基金The National Basic Research Program of China under contract No.2013CB430403the National Natural Science Foundation of China under contract No.51179025+1 种基金the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering under contract No.2013491511the Open Foundation of State Key Laboratory of Ocean Engineering under contract No.1305
文摘In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave proDaRated to a coastal zone from different directions.
基金jointly supported by the National Natural Science Foundation of China (Nos. 41566001, 41406044 and 41576024)Guangxi Natural Science Foundation (Nos. 2015GXNSFCA139023, 2018JJD150011, 2016JJF15001 and 2015GXNSFAA139247)+5 种基金Guangxi Science and Technology Development Program (Guikegong 1598016-8)Guangxi Science and Technology Major Project (Guike AA18118025)Guangxi Key Research and Development Program (Guike AB16380282)Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Qinzhou University (No. 2017KF02)the Fundamental Research Funds of Guangxi Academy of Sciences (No. 2017YJJ23005)supported by Vietnam State-Level Project KC09.14/16-20
文摘The Beibu Gulf is at an important geographical location and rich in gas, oil and biological resources. The observed currents showed that the current in the upper layer was opposite to that in the lower layer in boreal winter in the northern Beibu Gulf and it was northeastward in the lower layer. This northeastward current was reproduced by a 3 D baroclinic model in this study. It's found that the counter-wind deep current(referred to as ‘CWDC' hereinafter) strengthened from September to November but weakened from December to the following February. A closed meridional circulation in vertical direction was found in the northern Beibu Gulf, including CWDC, surface southwestward current, an upwelling, and a downwelling. The temporal variation process of the meridional circulation was similar to that of CWDC, with strength and range stronger in November and December than in other four months. Similar to the variation process of CWDC, the monsoon wind changed from weak easterly wind in September to strong northeasterly wind in November and December, and it was transformed into weak southeasterly wind in February again. The sensitive experiments showed that CWDC and the meridional circulation were controlled by the monsoon wind and were adjusted by heat flux-and tide-induced mixing, respectively. According to the momentum balance equation, it can be revealed the counter-wind deep current is a compensation current which is induced by the surface elevation gradient balanced by the Coriolis force, vertical diffusion and baroclinic pressure gradient.