The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenet...The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenetic ages spanning from Ediacaran to Devonian has been reported in the literature.This age range does not support the idea that the typical character of"coeval mineralization"in an exhalative sedimentary mineralization belt in China and worldwide.Therefore,the precise determination of mineralization ages of representative deposits is necessary to provide guides for exploration and metallogenetic models.The Dajiangping pyrite deposit is a typical example of this kind of deposits and is also the largest deposit with a proven reserve of 210 Mt.This deposit was thought to have formed in Ediacaran or Devonian.In this study,2-3 layers of 10-25 cm thick 2M1-type microcrystalline muscovite slate abruptly embedded in the No.Ⅳmassive orebody of the deposit has been identified to be low-grade metamorphic K-bentonite.A Concordia zircon LA-ICP-MS U-Pb age of 432.5±1.3 Ma(mean standard weighted deviation of concordance and equivalence=1.2;N=11)has been yielded for the low-grade metamorphic K-bentonite.This age is distinctly different from the Rb-Sr isochron age of630.1±7.3 Ma for siliceous rock at the top of the No.Ⅲbanded orebody and the Re-Os isochron age of 389±62 Ma for pyrites from a laminated orebody.Instead,it is close to the intercept age(429 Ma)of the youngest detrital zircons from sandstone interlayers of the No.Ⅲbanded orebody.The Concordia age is also coincident with those of the Late Caledonian(400-460 Ma)magmatism-metamorphism events which are widely distributed in Cathaysia Block.Particularly,it agrees well with that of the Early Silurian extensional volcanism(434-444 Ma)which have been revealed in the Dabaoshan,Siqian-Hekou,and Nanjing volcanic basins in northern Guangdong Province and southern Jiangxi Province.Hence,the dating result in this study confirms that the sedimentary time of the ore-host Daganshan Formation is Early Silurian,and implies that the mineralization age of the Dajiangping pyrite deposit should also be Early Silurian.In combination with the Early Silurian age of Shezui pyrite deposit and the Dabaoshan volcanic basin along the WSS pyrite belt,it could be inferred that the WSS pyrite belt provides a record of the northern expanding of Qinzhou-Fangcheng trough in Early Silurian and that the exhalative pyrite mineralization was triggered by the postcollisional extension of the margin of Cathaysia Block after the intracontinental collision between Cathaysia Block and Yangtze Block during Late Caledonian stage.展开更多
Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become...Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.展开更多
The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and ep...The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of silicidastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre- Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.展开更多
The late Paleozoic evolution of the Wulijishanhen(WSH)-Shangdan(SD) area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biologic...The late Paleozoic evolution of the Wulijishanhen(WSH)-Shangdan(SD) area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp.in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferouseearly Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobie Tianshan rift of southern Mongolia.展开更多
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still ...The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310-254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298-269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298-246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.展开更多
By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and contro...By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and controlling factors of the tight sandstone reservoirs in the Huagang Formation of Xihu sag, East China Sea Basin were comprehensively studied. The results show that: the sandstones of the Huagang Formation in the central inverted structural belt are poor in physical properties, dominated by feldspathic lithic quartz sandstone, high in quartz content, low in matrix, kaolinite and cement contents, and coarse in clastic grains;the acidic diagenetic environment formed by organic acids and meteoric water is vital for the formation of secondary pores in the reservoirs;and the development and distribution of the higher quality reservoirs in the tight sandstones of the Huagang Formation are controlled by sediment source, sedimentary facies belt, abnormal overpressure and diagenetic environment evolution. Sediment provenance and dominant sedimentary facies led to favorable initial physical properties of the sandstones in the Huagang Formation, which is the prerequisite for development of reservoirs with better quality later. Abnormal high pressure protected the primary pores, thus improving physical properties of the reservoirs in the Huagang Formation. Longitudinally, due to the difference in diagenetic environment evolution, the high-quality reservoirs in the Huagang Formation are concentrated in the sections formed in acidic diagenetic environment. Laterally, the high-quality reservoirs are concentrated in the lower section of the Huagang Formation with abnormal high pressure in the middle-northern part;but concentrated in the upper section of Huagang Formation shallower in burial depth in the middle-southern part.展开更多
According to the ideas and concepts of systems dynamic of continent structure, using previous information related to the study area, combining analyses on orogenic belt, basin and magmatic rock, the present paper synt...According to the ideas and concepts of systems dynamic of continent structure, using previous information related to the study area, combining analyses on orogenic belt, basin and magmatic rock, the present paper synthesizes the tectono - sedimentary development of southeastern coast region, China, with special emphasis on the mountain making, basining and magmatic activity. The tectonic evolution after Late Caledonian orogeny was dominated by alternating rifting and converging, subsiding and uplifting, mountain making and basining in central and southern parts of southeastern China and the adjacent regions to the east and west. Seventeen geologic events , nine events of plate or terrain convergence , and continental crust accretion , as well as eight events of intracontinental rifting and basin faulting , are closely related to the tectonic and sedimentary evolution of the study area . The accompanied intense and frequent sedimentation , folding , faulting , magmatism and ore- forming process allowed huge coal , multimetal and potential petroleum source rocks to form in local depressions throughout the Caledonian to Himalavan time .展开更多
The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses...The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519)from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%)lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed"Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon EHf(t)values have increased since^408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zirconεHf(t)values at^300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous.展开更多
Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploratio...Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploration can use the surface wave information of micro motion to study the shallow structure of underground media. In this study, we collected microtremor data at 68 stations in the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and determined the resonant frequency and obtained the distribution of sedimentary thickness in this area by using H/V spectral ratio. According to the results of H/V, the sedimentary layer in the basin is thick, and the predominant frequency of the basin is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. There are no obvious lateral changes in the impedance interface between bedrock and sedimentary layer in this area. The basement of Tongling, Anqing and Luzhou mining areas and their adjacent areas is Kongling-Dongling type basement, which is composed of a set of metamorphic core complex. The predominant frequency is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. The sedimentary thickness gradually thinned from 3800</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the west to 2100</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the East. Moreover, this article used SPAC (spatial autocorrelation) method to obtain the S-wave velocity structure of the mining area near Luzong. The SPAC method reveals that the depth of the interface between the loose sediments and the volcanic rocks is about 600 m in the study area near the Luzhou mining area in the Middle-Lower Yangtze Metallogenic Belt, and the average depth of the interface between the volcanic rock section and the intrusive complex section is about 1000</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. The thickness of the intrusive rock is more than 2500</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. Tourmaline is developed in the interior of the intrusive rock, which may have better exploration value.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41873058 and 41462001)the Natural Science and Technology Foundation of Guizhou Province,China(Grant No.JZ[2015]2009)。
文摘The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenetic ages spanning from Ediacaran to Devonian has been reported in the literature.This age range does not support the idea that the typical character of"coeval mineralization"in an exhalative sedimentary mineralization belt in China and worldwide.Therefore,the precise determination of mineralization ages of representative deposits is necessary to provide guides for exploration and metallogenetic models.The Dajiangping pyrite deposit is a typical example of this kind of deposits and is also the largest deposit with a proven reserve of 210 Mt.This deposit was thought to have formed in Ediacaran or Devonian.In this study,2-3 layers of 10-25 cm thick 2M1-type microcrystalline muscovite slate abruptly embedded in the No.Ⅳmassive orebody of the deposit has been identified to be low-grade metamorphic K-bentonite.A Concordia zircon LA-ICP-MS U-Pb age of 432.5±1.3 Ma(mean standard weighted deviation of concordance and equivalence=1.2;N=11)has been yielded for the low-grade metamorphic K-bentonite.This age is distinctly different from the Rb-Sr isochron age of630.1±7.3 Ma for siliceous rock at the top of the No.Ⅲbanded orebody and the Re-Os isochron age of 389±62 Ma for pyrites from a laminated orebody.Instead,it is close to the intercept age(429 Ma)of the youngest detrital zircons from sandstone interlayers of the No.Ⅲbanded orebody.The Concordia age is also coincident with those of the Late Caledonian(400-460 Ma)magmatism-metamorphism events which are widely distributed in Cathaysia Block.Particularly,it agrees well with that of the Early Silurian extensional volcanism(434-444 Ma)which have been revealed in the Dabaoshan,Siqian-Hekou,and Nanjing volcanic basins in northern Guangdong Province and southern Jiangxi Province.Hence,the dating result in this study confirms that the sedimentary time of the ore-host Daganshan Formation is Early Silurian,and implies that the mineralization age of the Dajiangping pyrite deposit should also be Early Silurian.In combination with the Early Silurian age of Shezui pyrite deposit and the Dabaoshan volcanic basin along the WSS pyrite belt,it could be inferred that the WSS pyrite belt provides a record of the northern expanding of Qinzhou-Fangcheng trough in Early Silurian and that the exhalative pyrite mineralization was triggered by the postcollisional extension of the margin of Cathaysia Block after the intracontinental collision between Cathaysia Block and Yangtze Block during Late Caledonian stage.
基金The Ministry of Land and Resources Project of Oil and Gas Resource Investigation and Evaluation under contract Nos XQ-2004-05 and XQ-2007-05the National Key Basic Research Program of China(973 Program)under contract No.2009CB219400+3 种基金the National Science and Technology Major Project under contract Nos 2008ZX05025,2011ZX05025 and2016ZX05026the National Natural Science Foundation under contract Nos 41872172 and 42072188the Research and Innovation Team Support Program of Shandong University of Science and Technology under contract No.2018TDJH101Hebei Provincial Resources Survey and Research Laboratory Open Foundation。
文摘Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.
文摘The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of silicidastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre- Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.
基金financially supported by the China Geological Survey (Grant No. [2010] 01-09-11)
文摘The late Paleozoic evolution of the Wulijishanhen(WSH)-Shangdan(SD) area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp.in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferouseearly Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobie Tianshan rift of southern Mongolia.
基金funded by grants from the National Key R&D Program of China (2016YFC0600403, 2017YFC0601206)the National Natural Science Foundation of China (41872063, 41520104003, 41888101)+1 种基金the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-SYS012)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL170404, CUG160232)
文摘The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310-254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298-269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298-246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.
基金Supported by the China National Science and Technology Major Project(2016ZX05027-002-006).
文摘By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and controlling factors of the tight sandstone reservoirs in the Huagang Formation of Xihu sag, East China Sea Basin were comprehensively studied. The results show that: the sandstones of the Huagang Formation in the central inverted structural belt are poor in physical properties, dominated by feldspathic lithic quartz sandstone, high in quartz content, low in matrix, kaolinite and cement contents, and coarse in clastic grains;the acidic diagenetic environment formed by organic acids and meteoric water is vital for the formation of secondary pores in the reservoirs;and the development and distribution of the higher quality reservoirs in the tight sandstones of the Huagang Formation are controlled by sediment source, sedimentary facies belt, abnormal overpressure and diagenetic environment evolution. Sediment provenance and dominant sedimentary facies led to favorable initial physical properties of the sandstones in the Huagang Formation, which is the prerequisite for development of reservoirs with better quality later. Abnormal high pressure protected the primary pores, thus improving physical properties of the reservoirs in the Huagang Formation. Longitudinally, due to the difference in diagenetic environment evolution, the high-quality reservoirs in the Huagang Formation are concentrated in the sections formed in acidic diagenetic environment. Laterally, the high-quality reservoirs are concentrated in the lower section of the Huagang Formation with abnormal high pressure in the middle-northern part;but concentrated in the upper section of Huagang Formation shallower in burial depth in the middle-southern part.
文摘According to the ideas and concepts of systems dynamic of continent structure, using previous information related to the study area, combining analyses on orogenic belt, basin and magmatic rock, the present paper synthesizes the tectono - sedimentary development of southeastern coast region, China, with special emphasis on the mountain making, basining and magmatic activity. The tectonic evolution after Late Caledonian orogeny was dominated by alternating rifting and converging, subsiding and uplifting, mountain making and basining in central and southern parts of southeastern China and the adjacent regions to the east and west. Seventeen geologic events , nine events of plate or terrain convergence , and continental crust accretion , as well as eight events of intracontinental rifting and basin faulting , are closely related to the tectonic and sedimentary evolution of the study area . The accompanied intense and frequent sedimentation , folding , faulting , magmatism and ore- forming process allowed huge coal , multimetal and potential petroleum source rocks to form in local depressions throughout the Caledonian to Himalavan time .
基金financially supported by the National Key R&D Program of China(2017YFC0601205)National Natural Science Foundation of China(41730213 and 41190075)+1 种基金the Hong Kong Research Grants Council General Research Fund(grants 17307918 and 17301915)the Youth Program of Shaanxi Natural Science Foundation(2020JQ589)。
文摘The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519)from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%)lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed"Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon EHf(t)values have increased since^408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zirconεHf(t)values at^300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous.
文摘Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploration can use the surface wave information of micro motion to study the shallow structure of underground media. In this study, we collected microtremor data at 68 stations in the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and determined the resonant frequency and obtained the distribution of sedimentary thickness in this area by using H/V spectral ratio. According to the results of H/V, the sedimentary layer in the basin is thick, and the predominant frequency of the basin is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. There are no obvious lateral changes in the impedance interface between bedrock and sedimentary layer in this area. The basement of Tongling, Anqing and Luzhou mining areas and their adjacent areas is Kongling-Dongling type basement, which is composed of a set of metamorphic core complex. The predominant frequency is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. The sedimentary thickness gradually thinned from 3800</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the west to 2100</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the East. Moreover, this article used SPAC (spatial autocorrelation) method to obtain the S-wave velocity structure of the mining area near Luzong. The SPAC method reveals that the depth of the interface between the loose sediments and the volcanic rocks is about 600 m in the study area near the Luzhou mining area in the Middle-Lower Yangtze Metallogenic Belt, and the average depth of the interface between the volcanic rock section and the intrusive complex section is about 1000</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. The thickness of the intrusive rock is more than 2500</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. Tourmaline is developed in the interior of the intrusive rock, which may have better exploration value.