In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr...In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.展开更多
A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data an...A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data and outcrop observations in Chang 8 oil-bearing group.This analysis indicates that shallow water delta sediments dominated by a fluvial system is the primary sedimentary system of the Chang 8 oil-bearing group of the Yanchang Formation in southwestern Ordos Basin.Four microfacies with fine grain sizes are identified: distributary channels,sheet sandstone,mouth bar and interdistributary fines.According to the sandbody's spatial distribution and internal architecture,two types of sandbody architectural element associations are identified: amalgamated distributary channels and thin-layer lobate sandstone.In this sedimentary system,net-like distributary channels at the delta with a narrow ribbon shape compose the skeleton of the sandbody that extends further into the delta front and shades into contiguous lobate distribution sheet sandstone in the distal delta front.The mouth bar is largely absent in this system.By analyzing the palaeogeomorphology,the palaeostructure background,sedimentary characteristics,sedimentary facies types and spatial distribution of sedimentary facies during the Chang 8 period,a distinctive depositional model of the Chang 8 shallow water fluvial-dominated delta was established,which primarily consists of straight multi-phase amalgamated distributary channels in the delta plain,net-like distributary channels frequently diverting and converging in the proximal delta front,sheet sandstones with dispersing contiguous lobate shapes in the distal delta front,and prodelta or shallow lake mudstones.展开更多
Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimen...Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.展开更多
For black shales,laminae and bedding are hard to identify,grain size is difficult to measure,and trace fossils do not exist.Taking the Ordovician Wufeng–Silurian Longmaxi shale in southern Sichuan Basin,China,as an e...For black shales,laminae and bedding are hard to identify,grain size is difficult to measure,and trace fossils do not exist.Taking the Ordovician Wufeng–Silurian Longmaxi shale in southern Sichuan Basin,China,as an example,the types,characteristics and models of microfacies in epicontinental shale are analyzed by means of full-scale observation of large thin sections,argon-ion polishing field emission-scanning electron microscopy(FE-SEM),and kerogen microscopy.The epicontinental sea develops delta,tidal flat and shelf facies,with black shale found in microfacies such as the underwater distributary channel and interdistributary bay under delta front facies,the calcareous and clayey flats under intertidal flat facies,the calcareous and clayey shelfs under shallow shelf facies,the deep slope,deep plain and deep depression under deep shelf facies,and the overflow under gravity flow facies.Basinward,silty lamina decreases and clayey lamina increases,the grain size changes from coarse silt to fine mud,the silica content increases from about 20%to above 55%,the carbonate and clay minerals content decreases from above 40%to around 10%,and the kerogen type changes from type II2 to type II1 and type I.Provenance and topography dominate the types and distribution of shale microfacies.The underwater distributary channel,interdistributary bay,clayey flat,clayey shelf,and overflow microfacies are developed in areas with sufficient sediment supply.The calcareous flat and calcareous shelf are developed in areas with insufficient sediment supply.The deep shelf shale area is divided into deep slope,deep plain,and deep depression microfacies as a result of three breaks.The formation of epicontinental shale with different microfacies is closely related to the tectonic setting,paleoclimate,and sea level rise.The relatively active tectonic setting increases the supply of terrigenous clasts,forming muddy water fine-grained sediment.The warm and humid paleoclimate is conducive to the enrichment of organic matter.The rapid sea level rise is helpful to the widespread black shale.展开更多
Member 5 of the Upper Triassic Xujiahe Formation(T_(3)X_(5))in central Sichuan Basin has made a breakthrough in exploration recently.However,this new stratum has not been investigated sufficiently with respect to basi...Member 5 of the Upper Triassic Xujiahe Formation(T_(3)X_(5))in central Sichuan Basin has made a breakthrough in exploration recently.However,this new stratum has not been investigated sufficiently with respect to basic geology,making its types and distribution of sedimentary facies unclear,which severely restricts its subsequent exploration evaluation.In this study,types of sedimentary microfacies in the first sand group of T_(3)X_(5)(T_(3)X_(5)^(1))are clarified through core observation and logging interpretation using core,log and seismic data,and then distribution of sedimentary microfacies in T_(3)X_(5)^(1) is determined according to seismic waveform features and seismic prediction.The results show that T_(3)X_(5)^(1) in the Dongfengchang area is mainly composed of deltaic deposits of several microfacies,such as delta front underwater distributary channel,sheet sand,and interdistributary bay.On seismic sections,different microfacies are significantly different in waveform features,the underwater distributary channel is characterized by one trough between two peaks,while diversion bay exhibits chaotic reflections between T6 and T51.The sedimentary microfacies varied greatly during the depositional period of T_(3)X_(5)^(1) in the Dongfengchang area,this is because that the sediment supply was mainly controlled by the southwest and southeast provenance regions.Three superimposed underwater distributary channels are developed in the Dongfengchang area.The phase-1 superimposed underwater distributary channel in the northwest transition to sheet sand in the northeast,the phase-2 superimposed underwater distributary channel in the south extends shortly,the phase-3 superimposed underwater distributary channel in the northeast has a large development scale.These research findings are helpful to guide the subsequent exploration of T_(3)X_(5) gas reservoir and also theoretically significant for investigating the depositional evolution of the Xujiahe Formation in central Sichuan Basin.展开更多
文摘In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.
基金Project(SQ2013CB021013)supported by the National Key Basic Research Program of ChinaProject(41002045)supported by the National Natural Science Foundation of China
文摘A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data and outcrop observations in Chang 8 oil-bearing group.This analysis indicates that shallow water delta sediments dominated by a fluvial system is the primary sedimentary system of the Chang 8 oil-bearing group of the Yanchang Formation in southwestern Ordos Basin.Four microfacies with fine grain sizes are identified: distributary channels,sheet sandstone,mouth bar and interdistributary fines.According to the sandbody's spatial distribution and internal architecture,two types of sandbody architectural element associations are identified: amalgamated distributary channels and thin-layer lobate sandstone.In this sedimentary system,net-like distributary channels at the delta with a narrow ribbon shape compose the skeleton of the sandbody that extends further into the delta front and shades into contiguous lobate distribution sheet sandstone in the distal delta front.The mouth bar is largely absent in this system.By analyzing the palaeogeomorphology,the palaeostructure background,sedimentary characteristics,sedimentary facies types and spatial distribution of sedimentary facies during the Chang 8 period,a distinctive depositional model of the Chang 8 shallow water fluvial-dominated delta was established,which primarily consists of straight multi-phase amalgamated distributary channels in the delta plain,net-like distributary channels frequently diverting and converging in the proximal delta front,sheet sandstones with dispersing contiguous lobate shapes in the distal delta front,and prodelta or shallow lake mudstones.
文摘Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.
基金Supported by the"14th Five-Year Plan"Major Special Project of the Science and Technology Management Department of RIPED(2021DJ1901).
文摘For black shales,laminae and bedding are hard to identify,grain size is difficult to measure,and trace fossils do not exist.Taking the Ordovician Wufeng–Silurian Longmaxi shale in southern Sichuan Basin,China,as an example,the types,characteristics and models of microfacies in epicontinental shale are analyzed by means of full-scale observation of large thin sections,argon-ion polishing field emission-scanning electron microscopy(FE-SEM),and kerogen microscopy.The epicontinental sea develops delta,tidal flat and shelf facies,with black shale found in microfacies such as the underwater distributary channel and interdistributary bay under delta front facies,the calcareous and clayey flats under intertidal flat facies,the calcareous and clayey shelfs under shallow shelf facies,the deep slope,deep plain and deep depression under deep shelf facies,and the overflow under gravity flow facies.Basinward,silty lamina decreases and clayey lamina increases,the grain size changes from coarse silt to fine mud,the silica content increases from about 20%to above 55%,the carbonate and clay minerals content decreases from above 40%to around 10%,and the kerogen type changes from type II2 to type II1 and type I.Provenance and topography dominate the types and distribution of shale microfacies.The underwater distributary channel,interdistributary bay,clayey flat,clayey shelf,and overflow microfacies are developed in areas with sufficient sediment supply.The calcareous flat and calcareous shelf are developed in areas with insufficient sediment supply.The deep shelf shale area is divided into deep slope,deep plain,and deep depression microfacies as a result of three breaks.The formation of epicontinental shale with different microfacies is closely related to the tectonic setting,paleoclimate,and sea level rise.The relatively active tectonic setting increases the supply of terrigenous clasts,forming muddy water fine-grained sediment.The warm and humid paleoclimate is conducive to the enrichment of organic matter.The rapid sea level rise is helpful to the widespread black shale.
基金supported by the Sinopec Scientific Research Projects"Exploration potential and target evaluation of Xujiahe Formation in northeastern Sichuan Basin" (No.P23130)"Sweetspot evaluation and prediction in Xujiahe Formation in Puguang oilfield" (No.P23201).
文摘Member 5 of the Upper Triassic Xujiahe Formation(T_(3)X_(5))in central Sichuan Basin has made a breakthrough in exploration recently.However,this new stratum has not been investigated sufficiently with respect to basic geology,making its types and distribution of sedimentary facies unclear,which severely restricts its subsequent exploration evaluation.In this study,types of sedimentary microfacies in the first sand group of T_(3)X_(5)(T_(3)X_(5)^(1))are clarified through core observation and logging interpretation using core,log and seismic data,and then distribution of sedimentary microfacies in T_(3)X_(5)^(1) is determined according to seismic waveform features and seismic prediction.The results show that T_(3)X_(5)^(1) in the Dongfengchang area is mainly composed of deltaic deposits of several microfacies,such as delta front underwater distributary channel,sheet sand,and interdistributary bay.On seismic sections,different microfacies are significantly different in waveform features,the underwater distributary channel is characterized by one trough between two peaks,while diversion bay exhibits chaotic reflections between T6 and T51.The sedimentary microfacies varied greatly during the depositional period of T_(3)X_(5)^(1) in the Dongfengchang area,this is because that the sediment supply was mainly controlled by the southwest and southeast provenance regions.Three superimposed underwater distributary channels are developed in the Dongfengchang area.The phase-1 superimposed underwater distributary channel in the northwest transition to sheet sand in the northeast,the phase-2 superimposed underwater distributary channel in the south extends shortly,the phase-3 superimposed underwater distributary channel in the northeast has a large development scale.These research findings are helpful to guide the subsequent exploration of T_(3)X_(5) gas reservoir and also theoretically significant for investigating the depositional evolution of the Xujiahe Formation in central Sichuan Basin.