期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Engineering behavior and sedimentation behavior of lead contaminated soil-bentonite vertical cutoff wall backfills 被引量:7
1
作者 范日东 杜延军 +1 位作者 刘松玉 陈左波 《Journal of Central South University》 SCIE EI CAS 2013年第8期2255-2262,共8页
Soil-bentonite (SB) vertical slurry cutoff wall is a useful treatment for urban industrial contaminated sites. Due to the clay-heavy metal interaction, significant changes would occur in the engineering behavior of ... Soil-bentonite (SB) vertical slurry cutoff wall is a useful treatment for urban industrial contaminated sites. Due to the clay-heavy metal interaction, significant changes would occur in the engineering behavior of SB cutoff walls. However, previous study is limited to kaolinitic soils or montmorillonitic soils along using solidum chloride and/or calcium chloride as target contaminant. In this work, a series of oedometer tests were conducted to investigate the effects of lead (Pb) on the compressibility and the permeability of kaolin-bentonite (KB) mixtures, a simplified model of in-situ SB cutoff wall backfills. In addition, sedimentation tests were conducted to interpret the mechanism controlling the change of compressibility and permeability from the perspective of soil fabric. The Pb-contaminated KB mixtures for oedometer tests and sedimentation tests were prepared with bentonite contents of 0, 5%, 10%, and 15% by dry mass, and they were mixed with pre-determined volume of lead nitrate solution based on designed Pb concentration and solid-to-solution ratio. The Pb concentration was controlled as 0, 0.1, 0.5, 1.0, 5.0, 10, and 50 mg/g with a solid-to-solution ratio of approximate 0.5. The prepared KB mixtures with bentonite contents of 0, 5%, and 10% were chosen for the sedimentation tests. They were freeze-dried and mixed with DDI with a solid-to-solution ratio of 10 g/100 mL. The results indicate that pH, compressibility, and permeability of KB mixture changed considerably with respect to Pb concentration. It is concluded that the fabric of KB mixture, depending on the particle-particle interaction subjected to different ranges of pH and Pb concentration, governs the sedimentation behavior and permeability. The results of liquid limit (WE) cannot be explained in terms of the sedimentation behavior since it is only ionic-dependent. 展开更多
关键词 slurry cutoff wall KAOLIN bentonite COMPRESSIBILITY sedimentation behavior
下载PDF
Bioaccumulation and effects of sediment-associated gold-and graphene oxide nanoparticles on Tubifex tubifex 被引量:1
2
作者 Panhong Zhang Henriette Selck +2 位作者 Stine Rosendal Tangaa Chengfang Pang Bin Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期138-145,共8页
With the development of nanotechnology,gold(Au) and graphene oxide(GO) nanoparticles have been widely used in various fields,resulting in an increased release of these particles into the environment.The released n... With the development of nanotechnology,gold(Au) and graphene oxide(GO) nanoparticles have been widely used in various fields,resulting in an increased release of these particles into the environment.The released nanoparticles may eventually accumulate in sediment,causing possible ecotoxicological effects to benthic invertebrates.However,the impact of Au-NPs and GO-NPs on the cosmopolitan oligochaete,Tubifex tubifex,in sediment exposure is not known.Mortality,behavioral impact(GO-NP and Au-NP) and uptake(only Au-NP) of sediment-associated Au-NPs(4.9±0.14 nm) and GO-NPs(116±0.05 nm) to T.tubifex were assessed in a number of 5-day exposure experiments.The results showed that the applied Au-NP concentrations(10 and 60 μg Au/g dry weight sediment) had no adverse effect on T.tubifex survival,while Au bioaccumulation increased with exposure concentration.In the case of GO-NPs,no mortality of T.tubifex was observed at a concentration range of 20 and180 μg GO/g dry weight sediment,whereas burrowing activity was significantly reduced at 20 and 180 μg GO/g dry weight sediment.Our results suggest that Au-NPs at 60 μg Au/g or GO-NPs at 20 and 180 μg GO/g were detected by T.tubifex as toxicants during short-term exposures. 展开更多
关键词 Metal nanoparticles Graphene oxide nanoparticles Burrowing behavior Benthic invertebrates Sediment exposure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部