期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Influence of Geometry on the Fluid Dynamics of Continuous Settler
1
作者 Flávia Daylane Tavares de Luna Andhros Guimarães da Silva Ardson dos Santos Vianna Júnior 《Open Journal of Fluid Dynamics》 2020年第3期164-183,共20页
Settlers are broadly used by industries for separating components with different densities, because they show operational facilities and high efficiency. As they use the action of gravity, they can treat great quantit... Settlers are broadly used by industries for separating components with different densities, because they show operational facilities and high efficiency. As they use the action of gravity, they can treat great quantities of effluents with lower energy expenditure. However, the performance of the settler depends on the streamlines inside the equipment, which, in turn, are influenced by the characteristics of the suspended solids, the geometry, and dimensions of the tank. In this paper, the effect of the settler geometry properties on the hydrodynamic in a vertical circular cylindrical tank was investigated. The evaluated parameters were the feed pipe design, the dimensions of the piece of equipment, and the structure of settler bottom. The numerical simulations were performed using the package ANSYS-CFX 16.0. It was considered a turbulent, isothermal, and stationary flow. The Euler-Euler multiphase model and BSL-RSM model turbulence were applied. The recirculation zones were influenced by the separation tank geometrical form. The modification of the feed pipe in the original project reduced the mixture inside the feedwell. The increase of the sedimentation tank diameter improved the performance of water and solid separation, elevating the efficiency by 10.48%, whilst the increase of the tank depth reduced the separation efficiency by 16.72%, in comparison to the original project. 展开更多
关键词 Settler Design Multiphase Flow sedimentation efficiency CIRCULATION
下载PDF
Assessment of the Tessier and BCR sequential extraction procedures for elemental partitioning of Ca, Fe, Mn, Al,and Ti and their application to surface sediments from Chinese continental shelf 被引量:2
2
作者 LIU Yanli ZHANG Jing HE Huijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第5期22-28,共7页
Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential... Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential extraction procedures(SEPs) have been widely applied for extraction of various geochemical phases from sediments. To choose a suitable SEP for phase extraction of sediments from the above Quaternary sedimentary shelf, efficiency and selectivity experiments were conducted on typical individual minerals and the applicability of each SEP was assessed for natural sediments(the natural sediment standard GSD-9 and three surface sediment samples). The geochemical represented elements(Ca, Fe, Mn, Al, and Ti) were measured using both SEPs. Both SEPs have good dissolution efficiency and selectivity for the targeted geochemical phases; the optimized extractant volume for each fraction was determined. The Tessier SEP is particularly recommended for the study of adsorption-desorption process. The application of the Tessier SEP to surface sediments can furnish valuable information, including the productivity conditions(via the reducible fraction Mn) and sedimentary environments(via the carbonate fraction Ca). These results confirm that the Tessier SEP is suitable for elemental fractionation in sediments from the Chinese continental shelf. 展开更多
关键词 elemental fractionation surface sediments Tessier SEP BCR SEP efficiency selectivity
下载PDF
Effect of Carrier Liquid on Electrorheological Performance and Stability of Oxalate Group-modified TiO2 Suspensions 被引量:1
3
作者 马宁 董旭峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期854-861,共8页
By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups(hydroxyl, hydrogen, and methyl) were used as the dispersing me... By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups(hydroxyl, hydrogen, and methyl) were used as the dispersing media to prepare different electrorheological(ER) fluids. Their zero-field viscosity, yield stress under direct current electric fields, ER efficiency, shear stability, leakage current density, and sedimentation stability were tested to study the effect of carrier liquid on the properties of ER fluids. The results indicate that the zerofield viscosity, the yield stress, and the leakage current density increase with increasing viscosity of the silicone oils. The effects of the viscosity on the ER efficiency, the shear stability, and the sedimentation ratio depend on the competition between the viscous resistance and the aggregation of the particles. Among the three ER fluids prepared with silicone oil with different terminal groups, hydroxyl-terminated oil based sample has the highest zero-field viscosity, the highest field-induced yield stress and ER efficiency, the largest current density, and the best sedimentation stability. 展开更多
关键词 electrorheological fluids carrier liquid shear stability ER efficiency sedimentation stability
下载PDF
Three-dimensional computational fluid dynamics (volume of fluid) modelling coupled with a stochastic discrete phase model for the performance analysis of an invert trap experimentally validated using field sewer solids
4
作者 Mohammad Mohsin Deo Raj Kaushal 《Particuology》 SCIE EI CAS CSCD 2017年第4期98-111,共14页
Invert traps are used to trap sewer solids flowing into a sewer drainage system, The performance of the invert trap in an open rectangular channel was experimentally and numerically analysed using field sewer solids c... Invert traps are used to trap sewer solids flowing into a sewer drainage system, The performance of the invert trap in an open rectangular channel was experimentally and numerically analysed using field sewer solids collected from a sewer drain. Experiments showed that the free water surface rises over the central opening (slot) of the invert trap, which reduces the velocity near the slot and allows more sediment to be trapped in comparison with the case for the fixed-lid model (assuming closed conduit flow with a shear-free top wall) used by earlier investigators. This phenomenon cannot be modelled using a closed conduit model as no extra space is provided for the fluctuation of the water surface, whereas this space is provided in the volume of fluid (VOF) model in the form of air space in ANSYS Fluent 14.0 software. Additionally, the zero atmospheric pressure at the free water surface cannot be modelled in a fixed-lid model. In the present study, experimental trap efflciencies of the invert trap using field sewer solids were fairly validated using a three-dimensional computational fluid dynamics model (VOF model) coupled with a stochastic discrete phase model. The flow field (i.e., velocities) predicted by the VOF model were compared with experimental velocities obtained employing particle image velocimetry. The water surface profile above the invert trap predicted by the VOF model was found to be in good agreement with the experimentally measured profile. The present study thus showed that the VOF model can be used with the stochastic discrete phase model to well predict the performance of invert traps. 展开更多
关键词 Computational fluid dynamics mode Invert trap sedimentation Trap efficiency Retention ratio Volume of fluid model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部