The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estua...The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estuary after the project has been implemented. In this research, firstly some basic information about the river evolution in the Yangtze Estuary is analyzed, including the variations of water depths in the Hengsha Passage and the inlet cross-sections of the North Passage and the South Passage, and changes of diversion ratios of ebb flow and sediment flux in the North Passage and the South Passage, Then the Delfl3D-FLOW model is applied to simulate the hydrodynamics and sediment transport in the Yangtze Estuary. This model has been calibrated and the simulated results agree well with the measured data of the tidal levels, flow velocities and suspended sediment concentration (SSC), indicating that the model can well simulate the hydrodynamics and sediment transport of the Yangtze Estuary caused by the Deepwater Navigation Channel Project. The research results show that the development of the Hengsha Passage and decrease of diversion ratio of ebb flow and sediment flux in the North Passage are the main reasons of sediment siltation in the upper reach of the Deepwater Navigation Channel in the Yangtze Estuary.展开更多
基金supported by the Key Subject Foundation of Shanghai Education Committee(Grant No.J50702)the Na-tional Key Basic Research Development Program of China(973 Program,Grant No.2012CB957704)
文摘The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estuary after the project has been implemented. In this research, firstly some basic information about the river evolution in the Yangtze Estuary is analyzed, including the variations of water depths in the Hengsha Passage and the inlet cross-sections of the North Passage and the South Passage, and changes of diversion ratios of ebb flow and sediment flux in the North Passage and the South Passage, Then the Delfl3D-FLOW model is applied to simulate the hydrodynamics and sediment transport in the Yangtze Estuary. This model has been calibrated and the simulated results agree well with the measured data of the tidal levels, flow velocities and suspended sediment concentration (SSC), indicating that the model can well simulate the hydrodynamics and sediment transport of the Yangtze Estuary caused by the Deepwater Navigation Channel Project. The research results show that the development of the Hengsha Passage and decrease of diversion ratio of ebb flow and sediment flux in the North Passage are the main reasons of sediment siltation in the upper reach of the Deepwater Navigation Channel in the Yangtze Estuary.