The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest...The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.展开更多
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ...Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.展开更多
Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germinat...Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.展开更多
Ilex asprella(Hook.et Arn.)Champ.ex Benth is one of the most important traditional Chinese medicines in southern China.The seeds of Ilex asprella usually have extremely low germination due to their dormancy characteri...Ilex asprella(Hook.et Arn.)Champ.ex Benth is one of the most important traditional Chinese medicines in southern China.The seeds of Ilex asprella usually have extremely low germination due to their dormancy characteristics,which severely impacts the efficiency of seedling raising and increases labor costs.In this study,to improve the seed germination of I.asprella,the effects of germination substrate,hormone,winnowing,and stratification treatments on the seed germination of I.asprella were investigated.The results of the germination matrix showed that the highest germination percentage of 45.2%was achieved under the 20℃/10℃day/night temperature and vermiculite germination medium conditions.The results of hormone treatments revealed that 100–400 mg/L of gibberellin(GA)and 50–100 mg/L of salicylic acid(SA)were found to be effective in releasing the dormancy of I.asprella seeds.Moreover,winnowing could effectively eliminate unsaturated seeds and impurities,thus improving the seed germination of I.asprella.Furthermore,warm temperature(15℃)stratification could expand the temperature range of I.asprella’s seed germination,which was beneficial for seed germination of I.asprella and for seed nursery at room temperature in production practice.The present study obtained a method to break dormancy and increase seed germination in I.asprella,thereby forming a groundwork for improving the efficiency of large-scale planting of I.asprella.展开更多
Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings.Melatonin has been proven to play an important role in alleviating plant stress.However,its effect on seed germination u...Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings.Melatonin has been proven to play an important role in alleviating plant stress.However,its effect on seed germination under drought conditions is still poorly understood.Therefore,we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress.Rice seeds were treated with different concentrations of melatonin(i.e.,0,20,100,and 500μM)and drought stress was simulated with 5%polyethylene glycol 6000(PEG6000).The results showed that 100μM melatonin can effectively improve the germination potential,rate and index;the vigor index of rice seeds;and the length of the shoot and root.In addition,that treatment also increased the activity of superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT),and reduced the content of malondialdehyde(MDA).The grey relational grade between the shoot MDA content and the melatonin seed-soaking treatment was the highest,which could be useful for evaluating the effect of melatonin on drought tolerance.Two-way analysis of variance showed that the effect of single melatonin treatment on rice seeds was more significant than that of single drought stress and interaction treatment of drought and melatonin(p<0.05).The subordinate function results showed that 100μM melatonin significantly improved the germination and physiological indexes of rice seeds and effectively alleviated the adverse effects of drought stress on rice seedlings.The results helped to improve the understanding of the morphological and physiological involvement of melatonin in promoting seed germination and seedling development under drought stress.展开更多
Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK...Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK2 gene families,were identified from the hemp reference genome,including 7 CsPYL(pyrab-actin resistance1-like,ABA receptor),8 CsPP2CA(group A protein phosphatase 2c),and 7 CsSnRK2(sucrose nonfermenting1-related protein kinase 2).The content of ABA in hemp seeds in germination stage is lower than that in non-germination stage.Exogenous ABA(1 or 10μM)treatment had a significant regulatory effect on the selected PYL,PP2C,SnRK2 gene families.CsAHG3 and CsHAI1 were most significantly affected by exogenous ABA treatment.Yeast two-hybrid experiments were performed to reveal that CsPYL5,CsSnRK2.2,and CsSnRK2.3 could interact with CsPP2CA7 and demonstrate that this interaction was ABA-independent.Our results indicated that CsPYL5,CsSnRK2.2,CsSnRK2.3 and CsPP2CA7 might involve in the ABA signaling transduction pathway of hemp seeds during the hemp seed germination stages.This study suggested that novel genetic views can be brought into investigation of ABA signaling pathway in hemp seeds and lay the foundation for further exploration of the mechanism of hemp seed germination.展开更多
Seed germination (in laboratory and field conditions) and vegetative reproduction (by cuttings) of a promising decorative species—Lonicera tatarica L. (Caprifoliaceae Juss.) was studied for the first time in the cond...Seed germination (in laboratory and field conditions) and vegetative reproduction (by cuttings) of a promising decorative species—Lonicera tatarica L. (Caprifoliaceae Juss.) was studied for the first time in the conditions of introduction of the Tashkent Botanical Garden of Uzbekistan. Thus, the optimal temperature for germination of L. tatarica seeds in laboratory conditions is +20°C + 22°C, at which germination was 73%. The germination rate of seeds sown in autumn in the field was 62%, and the germination rate of seeds sown in spring was 71%. It was noted that in greenhouse conditions at an air temperature of 20°C - 22°C and a relative humidity of 49% - 53%, the rootability of cuttings was 75%. It was revealed that the studied species adapted well to the conditions of introduction. Taking into account the effectiveness of vegetative reproduction of L. tatarica, it can be recommended for improving the aesthetic condition and landscaping of cities, landscaping and landscape design.展开更多
[Objectives]In this experiment,wheat seeds were treated with different concentrations of gibberellin and different concentrations of salt solution to study the change of germination index of wheat seeds.[Methods]The g...[Objectives]In this experiment,wheat seeds were treated with different concentrations of gibberellin and different concentrations of salt solution to study the change of germination index of wheat seeds.[Methods]The germination rate,germination potential and germination index of wheat seeds were measured by routine methods,and the effect of exogenous gibberellin on germination of wheat seeds under salt stress was observed.[Results]The germination rate,germination potential and germination index of wheat seeds under salt stress were significantly increased after exogenous treatment of 0.25 and 0.50 g/L gibberellin within the range of salt concentration gradient.However,when the concentration of gibberellin was too high,it would inhibit the germination of seeds.[Conclusions]Appropriate concentration of gibberellin can effectively alleviate the stress caused by salt on wheat seed germination.In this experiment,the best concentration of gibberellin to alleviate salt stress was 0.25 g/L.展开更多
Seeds were subjected to three different pre-sowing seed treatments: immersion in lukewarm water for 2 hours, immersion in concentrated sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) for 5 minutes,...Seeds were subjected to three different pre-sowing seed treatments: immersion in lukewarm water for 2 hours, immersion in concentrated sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) for 5 minutes, hilar removal, and a control in which the seeds were sown without being treated. The experiment was laid out in the Completely Randomized Design (CRD) with four replicates and 60 seeds per treatment. Seeds were sown in an improvised Seedbox in October 2019. Germination was monitored daily for one month. The results showed that Mamalis seeds treated with lukewarm water have the earliest germination of twelve days, with a germination percentage of 66.67%. The germination rate of another treatment ranges from 0 - 44 percent, compared to 45 percent for the control treatment. It seems prudent to conclude that to enhance the vegetative propagation methods is to soaking in warm water at 37.5˚C for 2 hours could provide the best growth.展开更多
Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even t...Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).展开更多
[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide...[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide gel electrophoresis method, the expressions of AMY and SOD isozymes during seed germination process were analyzed. ~ Result] The main AMY bands remained strong during the whole peri- od and a new band A2 appeared in the middle and late period of seed germination. Some new SOD bands occurred at the early stage, then be- came weak or disappeared in the middle period, and band S6 became intense in the late peried. [ Conclusion.] The expression of AMY and SOD isozyme gene has temporal difference during germination of E. henryi Oliv seeds.展开更多
A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being high...A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.展开更多
[Objective]The aim of this study was to understand the role of polyamine oxidative degradation in the process of lettuce seed germination. [Method]After lettuce seed soaking treatments with aminoguanidine (AG,a speci...[Objective]The aim of this study was to understand the role of polyamine oxidative degradation in the process of lettuce seed germination. [Method]After lettuce seed soaking treatments with aminoguanidine (AG,a specific inhibitor of polyamine oxidases),seed germination rate,activities of polyamine oxidase (PAO) and diamine oxidase (DAO),change of endogenous polyamine and H2O2 content were determined. [Result]Compared with the control,AG treatment strongly inhibited the seed germination,which also had an extremely significant difference in seed germination rate after incubation for 12 h. During the seed germination,activities of PAO and DAO significantly changed,while their activities firstly increased and then decreased,then DAO and PAO reached peaks at 24 h and 48 h respectively. AG treatment was strongly inhibitory for activities of DAO and PAO,whose activities even disappeared after incubation with AG for 24 h and 36 h. During the seed germination,endogenous Put reduced sharply in the first 24 h,then reduced slowly in 24-60 h,while Spd decreased slowly in the early stage of germination,and then sharply declined after 48 h. However,Spm content was low but slightly increased,and the total polyamine gradually decreased. AG treatment could significantly increase endogenous polyamines,especially Put and Spd contents. During the seed germination,H2O2 content gradually increased,and had a peak from 36 to 48 h,then kept a high level at last. AG treatment could significantly reduce H2O2 content. [Conclusion]During the seed germination,the changes of endogenous polyamine and H2O2 content correspond with the changes of PAO and DAO activities,which indicate that there is an active polyamine metabolism of oxidative degradation during the lettuce seed germination.展开更多
[Objective] This study aimed to investigate the effect of hydrogen peroxide on the seed germination of eggplant (Solanum melongena L.) Luba 2.[Method] The seeds of Luba 2 were separately soaked in 20%,40%,60% and...[Objective] This study aimed to investigate the effect of hydrogen peroxide on the seed germination of eggplant (Solanum melongena L.) Luba 2.[Method] The seeds of Luba 2 were separately soaked in 20%,40%,60% and 80% hydrogen peroxide solution for 2,5 and 10 min before seed germination.The germination rate and days to reach the maximum germination rate were calculated.[Result] Treatment with low concentrations (20%) of hydrogen peroxide for 2 and 5 min made eggplant Luba 2 germinate in advance,and shortened the time to reach the maximum germination rate.Treatment with high concentrations (60% and 80%) of hydrogen peroxide solution for longer time (10 min) caused significant damage to the seeds,delayed seed germination,and reduced the germination rate.[Conclusion] This study will provide theoretical references for the production practices of eggplant.展开更多
The effect of different treatment on seed germination of Echinochloa crusgalli was investigated in this study. The results showed that GA3, concentrated sulfuric acid, KNO3, NaOH and temperature treatments all could p...The effect of different treatment on seed germination of Echinochloa crusgalli was investigated in this study. The results showed that GA3, concentrated sulfuric acid, KNO3, NaOH and temperature treatments all could promote the germination of E. crus-galli seeds, but there were great differences in the promoting effect. Seed soaking with 1 000-1 500 mg/L of GA3 for 24 h and seed soaking with concentrated sulfuric acid for 15-20 min all maintained the germination rate of E. crusgalli seeds higher than 70.0%; 1.5% NaOH made the germination rate of E. crusgalli seeds up to 93.7%, but higher-concentration NaOH significantly reduced the germination rate of E. crus-galli seeds; KNO3 treatment showed certain promoting effect on germination of E. crus-galli seeds, but the effect was not ideal, i.e., the germination rate was lower than 35.5%; 20-25 ℃ temperature treatment could effectively promote the germination of E. crus-galli seeds, and the germination rate ranged from 68.2% to 75.8%.展开更多
Objective] The aim was to investigate the effects of Pb stress on seed germination and seedling growth of Chenopodium glaucum and Chenopodium serot-inum L. [Method] With C. glaucum and C. serotinum as the study object...Objective] The aim was to investigate the effects of Pb stress on seed germination and seedling growth of Chenopodium glaucum and Chenopodium serot-inum L. [Method] With C. glaucum and C. serotinum as the study objects, the ef-fects of different concentrations of Pb on their seed germination and seedling growth, as wel as on the leaf SOD, POD and CAT activity were studied primarily. [Result] The germination potential of both the two kinds of weed seeds increased first and then decreased with the increase of Pb concentration. The germination po-tential of C. serotinum and C. glaucum seeds reached the peak at Pb concentration of 25 and 50 mg/L, respectively. With the increase of Pb treatment concentration, the germination rate, germination index and vigor index of C. serotinum and C. glaucum seeds decreased, and their bud length and root length also reduced gradu-al y. ln overal , the leaf SOD, POD and CAT activity of C. glaucum and C. serot-inum_ seedlings increased first and then decreased with the increased treatment concentration of Pb. The leaf SOD and POD activity of C. glaucum and C. serot-inum seedlings reached the maximum at Pb concentration of 200 and 100 mg/L, respectively, and the leaf CAT activity reached the maximum at Pb concentration of 100 mg/L. [Conclusion] The two Chenopodium species had strong tolerance to Pb stress, and they could be used as alternative accumulator plants of soil Pb contami-nation.展开更多
To investigate the effects of the heavy metal cadmium (Cd) on seed ger- mination and seedling growth of Brassica napus L., 25 B. napus lines with different genetic background were treated with four concentrations (...To investigate the effects of the heavy metal cadmium (Cd) on seed ger- mination and seedling growth of Brassica napus L., 25 B. napus lines with different genetic background were treated with four concentrations (0, 1, 5 and 10 mg/L) of Cd, and then, their germination potential, germination rate, seedling length, main root length, seedling fresh weight, and seedling dry weight were measured. The re- sults showed that the response of the B. napus lines to Cd stress was different. With the increase of Cd concentration, the relative germination potential and relative seedling rate increased first and then decreased, and reached the maximum levels when the Cd concentration was 5 rag/L. The inhibitory effects of Cd stress on seedling growth indices in a decreasing order were root length〉seedling length〉 seedling fresh weight〉seedling water content. There were extremely significant differ- ences in the relative root length, relative seedling length, relative seedling fresh weight and relative seedling water content among the B. napus lines treated by dif- ferent concentrations of Cd, while there were no significant differences in the rela- tive germination potential and relative seedling rate among the lines, except that the relative seedling rate was significantly different among the lines treated by 5 mg/L Cd. The results suggested that seedling growth was more sensitive than seed ger- mination to heavy metal stress.展开更多
The stimulative effect of trace elements on seed germination and seedling growth of Pinus tabulaeformis was tested. The experiments were carried out on seed soak and topdressing with different trace elements and varie...The stimulative effect of trace elements on seed germination and seedling growth of Pinus tabulaeformis was tested. The experiments were carried out on seed soak and topdressing with different trace elements and varied concentrations at the nursery of Gardens Research Institute, Harbin, in 2000-2001. The experimental results showed that soaking seed with 1% and 0.2% concentrations of Mn element produced best result for seed germination, and the germination rate was increased by 9%~19% for the seeds treated with 1% concentration and 12%~14% for the seeds treated with 0.2% concentration compared with the control group. The seeds treated with boron element had lowest germination rate. For trace element topdressing, Mn and Mo elements presented good result for seedling growth and the treatment with low concentration was even better. The height or chlorophyll content of the seedlings with spray of low-concentration Mn and Mo element was much higher than that of untreated ones. In the contrast to the treating method of seed soak, topdressing (application of spraying on foliage) had evident effect on seedling growth.展开更多
With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amyla...With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amylase ac- tivities of seeds significantly, which accelerated the transformation process of en- dosperm starch to soluble sugar, resulting in emergence of 36 hours in advance under low temperature condition. Germination rate and germination potential of magnetized water soaking were higher than the contrast by 6.7% and 10.0%, which helped cultivate vigorous seedling.展开更多
[Objective] This study aimed to provide the theoretical and technical basis for alleviating salt damages in production practice of oil sunflower (Helianthus annuus). [Method] Seeds of oil sunflower were used as expe...[Objective] This study aimed to provide the theoretical and technical basis for alleviating salt damages in production practice of oil sunflower (Helianthus annuus). [Method] Seeds of oil sunflower were used as experimental materials and treated with 120 mmol/L NaCI solution and 0-200 mg/L Vc solution during the germina- tion process, to investigate the effects of exogenous Vc on seed germination and physiological properties of oil sunflower under salt stress. [Result] Under salt stress, with the increase of Vc concentration, germination potential and germination rate of oil sunflower seeds, superoxide dismutase (SOD) and peroxidase (POD) activities and proline (Pro) content of oil sunflower seedlings increased first and then declined, which reached the maixmum in 80 mg/L Vc treatment, 120 mg/L Vc treatment and 80 mg/L Vc treatment, respectively; malondialdehyde (MDA) content of oil sunflower seedlings declined first and then increased, which reached the minimum in 160 mg/L Vc treatment. [Conclusion] To varying degrees, Vc could improve germination potential and germination rate of oil sunflower seeds and promote seedling growth under salt stress, thus alleviating the damages of salt stress to seed germination and seedling growth of oil sunflower.展开更多
基金funded by the National Natural Science Foundation of China(32072022)the Nanfan Special Project,CAAS(YBXM07)the Hainan Yazhou Bay Seed Laboratory,China(B23CJ0208)。
文摘The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.
基金supported by the Key Research and Development Program of Shaanxi(2021NY-083)the National Natural Science Foundation of China(31871567).
文摘Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+1 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052,2023A1515012092)the Science and Technology Project of Guangzhou,China(2023A04J0749,2023A04J1452).
文摘Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.
基金supported by the Fund Projects of the Central Government in Guidance of Local Science and Technology Development(GuiKeZY22096020)Natural Science Foundation of Guangxi(2019GXNSFBA245073)+1 种基金National Natural Science Foundation of China(82260750,82260749)Cooperative Project of Guangxi Botanical Garden of Medicinal Plants with China Resources Sanjiu Medical&Pharmaceutical Co.,Ltd.(202112-1).
文摘Ilex asprella(Hook.et Arn.)Champ.ex Benth is one of the most important traditional Chinese medicines in southern China.The seeds of Ilex asprella usually have extremely low germination due to their dormancy characteristics,which severely impacts the efficiency of seedling raising and increases labor costs.In this study,to improve the seed germination of I.asprella,the effects of germination substrate,hormone,winnowing,and stratification treatments on the seed germination of I.asprella were investigated.The results of the germination matrix showed that the highest germination percentage of 45.2%was achieved under the 20℃/10℃day/night temperature and vermiculite germination medium conditions.The results of hormone treatments revealed that 100–400 mg/L of gibberellin(GA)and 50–100 mg/L of salicylic acid(SA)were found to be effective in releasing the dormancy of I.asprella seeds.Moreover,winnowing could effectively eliminate unsaturated seeds and impurities,thus improving the seed germination of I.asprella.Furthermore,warm temperature(15℃)stratification could expand the temperature range of I.asprella’s seed germination,which was beneficial for seed germination of I.asprella and for seed nursery at room temperature in production practice.The present study obtained a method to break dormancy and increase seed germination in I.asprella,thereby forming a groundwork for improving the efficiency of large-scale planting of I.asprella.
基金This work was funded by the National Natural Science Foundation of China(31971923,31301650)the National Key R&D Program of China(2017YFD0301501)+2 种基金the Hunan Provincial Natural Science Foundation of China(2020JJ4360)the Key Scientific Research Project of Hunan Provincial Education Department of China(19A220)Innovation and Entrepreneurship Training Program for College Students of Hunan Agricultural University(XCX2021038).
文摘Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings.Melatonin has been proven to play an important role in alleviating plant stress.However,its effect on seed germination under drought conditions is still poorly understood.Therefore,we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress.Rice seeds were treated with different concentrations of melatonin(i.e.,0,20,100,and 500μM)and drought stress was simulated with 5%polyethylene glycol 6000(PEG6000).The results showed that 100μM melatonin can effectively improve the germination potential,rate and index;the vigor index of rice seeds;and the length of the shoot and root.In addition,that treatment also increased the activity of superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT),and reduced the content of malondialdehyde(MDA).The grey relational grade between the shoot MDA content and the melatonin seed-soaking treatment was the highest,which could be useful for evaluating the effect of melatonin on drought tolerance.Two-way analysis of variance showed that the effect of single melatonin treatment on rice seeds was more significant than that of single drought stress and interaction treatment of drought and melatonin(p<0.05).The subordinate function results showed that 100μM melatonin significantly improved the germination and physiological indexes of rice seeds and effectively alleviated the adverse effects of drought stress on rice seedlings.The results helped to improve the understanding of the morphological and physiological involvement of melatonin in promoting seed germination and seedling development under drought stress.
基金funded by the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ13-YQ049)the Scientific Research Project of Hainan Academician Innovation Platform(SQ2021PTZ0052)the National Key R&D Program of China from the Ministry of Science and Technology of China(No.2019YFC1711100).
文摘Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK2 gene families,were identified from the hemp reference genome,including 7 CsPYL(pyrab-actin resistance1-like,ABA receptor),8 CsPP2CA(group A protein phosphatase 2c),and 7 CsSnRK2(sucrose nonfermenting1-related protein kinase 2).The content of ABA in hemp seeds in germination stage is lower than that in non-germination stage.Exogenous ABA(1 or 10μM)treatment had a significant regulatory effect on the selected PYL,PP2C,SnRK2 gene families.CsAHG3 and CsHAI1 were most significantly affected by exogenous ABA treatment.Yeast two-hybrid experiments were performed to reveal that CsPYL5,CsSnRK2.2,and CsSnRK2.3 could interact with CsPP2CA7 and demonstrate that this interaction was ABA-independent.Our results indicated that CsPYL5,CsSnRK2.2,CsSnRK2.3 and CsPP2CA7 might involve in the ABA signaling transduction pathway of hemp seeds during the hemp seed germination stages.This study suggested that novel genetic views can be brought into investigation of ABA signaling pathway in hemp seeds and lay the foundation for further exploration of the mechanism of hemp seed germination.
文摘Seed germination (in laboratory and field conditions) and vegetative reproduction (by cuttings) of a promising decorative species—Lonicera tatarica L. (Caprifoliaceae Juss.) was studied for the first time in the conditions of introduction of the Tashkent Botanical Garden of Uzbekistan. Thus, the optimal temperature for germination of L. tatarica seeds in laboratory conditions is +20°C + 22°C, at which germination was 73%. The germination rate of seeds sown in autumn in the field was 62%, and the germination rate of seeds sown in spring was 71%. It was noted that in greenhouse conditions at an air temperature of 20°C - 22°C and a relative humidity of 49% - 53%, the rootability of cuttings was 75%. It was revealed that the studied species adapted well to the conditions of introduction. Taking into account the effectiveness of vegetative reproduction of L. tatarica, it can be recommended for improving the aesthetic condition and landscaping of cities, landscaping and landscape design.
基金Supported by School-level Training Program of Hetian Vocational Technical College(HZ-2022-10).
文摘[Objectives]In this experiment,wheat seeds were treated with different concentrations of gibberellin and different concentrations of salt solution to study the change of germination index of wheat seeds.[Methods]The germination rate,germination potential and germination index of wheat seeds were measured by routine methods,and the effect of exogenous gibberellin on germination of wheat seeds under salt stress was observed.[Results]The germination rate,germination potential and germination index of wheat seeds under salt stress were significantly increased after exogenous treatment of 0.25 and 0.50 g/L gibberellin within the range of salt concentration gradient.However,when the concentration of gibberellin was too high,it would inhibit the germination of seeds.[Conclusions]Appropriate concentration of gibberellin can effectively alleviate the stress caused by salt on wheat seed germination.In this experiment,the best concentration of gibberellin to alleviate salt stress was 0.25 g/L.
文摘Seeds were subjected to three different pre-sowing seed treatments: immersion in lukewarm water for 2 hours, immersion in concentrated sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) for 5 minutes, hilar removal, and a control in which the seeds were sown without being treated. The experiment was laid out in the Completely Randomized Design (CRD) with four replicates and 60 seeds per treatment. Seeds were sown in an improvised Seedbox in October 2019. Germination was monitored daily for one month. The results showed that Mamalis seeds treated with lukewarm water have the earliest germination of twelve days, with a germination percentage of 66.67%. The germination rate of another treatment ranges from 0 - 44 percent, compared to 45 percent for the control treatment. It seems prudent to conclude that to enhance the vegetative propagation methods is to soaking in warm water at 37.5˚C for 2 hours could provide the best growth.
文摘Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).
文摘[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide gel electrophoresis method, the expressions of AMY and SOD isozymes during seed germination process were analyzed. ~ Result] The main AMY bands remained strong during the whole peri- od and a new band A2 appeared in the middle and late period of seed germination. Some new SOD bands occurred at the early stage, then be- came weak or disappeared in the middle period, and band S6 became intense in the late peried. [ Conclusion.] The expression of AMY and SOD isozyme gene has temporal difference during germination of E. henryi Oliv seeds.
文摘A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.
基金Supported by Doctorate Fund of Suzhou University (13120740)~~
文摘[Objective]The aim of this study was to understand the role of polyamine oxidative degradation in the process of lettuce seed germination. [Method]After lettuce seed soaking treatments with aminoguanidine (AG,a specific inhibitor of polyamine oxidases),seed germination rate,activities of polyamine oxidase (PAO) and diamine oxidase (DAO),change of endogenous polyamine and H2O2 content were determined. [Result]Compared with the control,AG treatment strongly inhibited the seed germination,which also had an extremely significant difference in seed germination rate after incubation for 12 h. During the seed germination,activities of PAO and DAO significantly changed,while their activities firstly increased and then decreased,then DAO and PAO reached peaks at 24 h and 48 h respectively. AG treatment was strongly inhibitory for activities of DAO and PAO,whose activities even disappeared after incubation with AG for 24 h and 36 h. During the seed germination,endogenous Put reduced sharply in the first 24 h,then reduced slowly in 24-60 h,while Spd decreased slowly in the early stage of germination,and then sharply declined after 48 h. However,Spm content was low but slightly increased,and the total polyamine gradually decreased. AG treatment could significantly increase endogenous polyamines,especially Put and Spd contents. During the seed germination,H2O2 content gradually increased,and had a peak from 36 to 48 h,then kept a high level at last. AG treatment could significantly reduce H2O2 content. [Conclusion]During the seed germination,the changes of endogenous polyamine and H2O2 content correspond with the changes of PAO and DAO activities,which indicate that there is an active polyamine metabolism of oxidative degradation during the lettuce seed germination.
基金Supported by Special Fund of Beijing Academy of Agriculture and Forestry Sciences for Distinguished Young Scholars (QNJJ201211)National Key Technology Research and Development Program (2012BAK26B03)+1 种基金Special Fund of Beijing Academy of Agriculture and Forestry Sciences for Scientific and Technological Innovation (KJCX201202001,KJCX201101010)Key Project Fund of Beijing Municipal Commission of Science and Technology (D131100000413001)~~
文摘[Objective] This study aimed to investigate the effect of hydrogen peroxide on the seed germination of eggplant (Solanum melongena L.) Luba 2.[Method] The seeds of Luba 2 were separately soaked in 20%,40%,60% and 80% hydrogen peroxide solution for 2,5 and 10 min before seed germination.The germination rate and days to reach the maximum germination rate were calculated.[Result] Treatment with low concentrations (20%) of hydrogen peroxide for 2 and 5 min made eggplant Luba 2 germinate in advance,and shortened the time to reach the maximum germination rate.Treatment with high concentrations (60% and 80%) of hydrogen peroxide solution for longer time (10 min) caused significant damage to the seeds,delayed seed germination,and reduced the germination rate.[Conclusion] This study will provide theoretical references for the production practices of eggplant.
基金Supported by Open Foundation of Key Laboratory of Hunan Provincial Education Department(15K067)Key Laboratory of Pesticide Harmless Application of Hunan Higher Education~~
文摘The effect of different treatment on seed germination of Echinochloa crusgalli was investigated in this study. The results showed that GA3, concentrated sulfuric acid, KNO3, NaOH and temperature treatments all could promote the germination of E. crus-galli seeds, but there were great differences in the promoting effect. Seed soaking with 1 000-1 500 mg/L of GA3 for 24 h and seed soaking with concentrated sulfuric acid for 15-20 min all maintained the germination rate of E. crusgalli seeds higher than 70.0%; 1.5% NaOH made the germination rate of E. crusgalli seeds up to 93.7%, but higher-concentration NaOH significantly reduced the germination rate of E. crus-galli seeds; KNO3 treatment showed certain promoting effect on germination of E. crus-galli seeds, but the effect was not ideal, i.e., the germination rate was lower than 35.5%; 20-25 ℃ temperature treatment could effectively promote the germination of E. crus-galli seeds, and the germination rate ranged from 68.2% to 75.8%.
基金Supported by Scientific Research and Development Plan of Department of Education of Shandong Province(J08LD51)~~
文摘Objective] The aim was to investigate the effects of Pb stress on seed germination and seedling growth of Chenopodium glaucum and Chenopodium serot-inum L. [Method] With C. glaucum and C. serotinum as the study objects, the ef-fects of different concentrations of Pb on their seed germination and seedling growth, as wel as on the leaf SOD, POD and CAT activity were studied primarily. [Result] The germination potential of both the two kinds of weed seeds increased first and then decreased with the increase of Pb concentration. The germination po-tential of C. serotinum and C. glaucum seeds reached the peak at Pb concentration of 25 and 50 mg/L, respectively. With the increase of Pb treatment concentration, the germination rate, germination index and vigor index of C. serotinum and C. glaucum seeds decreased, and their bud length and root length also reduced gradu-al y. ln overal , the leaf SOD, POD and CAT activity of C. glaucum and C. serot-inum_ seedlings increased first and then decreased with the increased treatment concentration of Pb. The leaf SOD and POD activity of C. glaucum and C. serot-inum seedlings reached the maximum at Pb concentration of 200 and 100 mg/L, respectively, and the leaf CAT activity reached the maximum at Pb concentration of 100 mg/L. [Conclusion] The two Chenopodium species had strong tolerance to Pb stress, and they could be used as alternative accumulator plants of soil Pb contami-nation.
基金Supported by Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-13)Rape Heterosis Utilization and Highly Heterotic Hybrid Development Project(2016YFD0101300)+3 种基金the Fun from the Oil Crop Testing Station in the Upper Reach of Yangtze River,Ministry of Agriculture of China(09203020)Key Project of Crop Breeding of Sichuan Province(2016NYZ0031)Innovation Ability Improvement Program of Sichuan Provincial Department of Finance(2016zypz-013)Science and Technology Plan of Sichuan Province(2014NZ0042)~~
文摘To investigate the effects of the heavy metal cadmium (Cd) on seed ger- mination and seedling growth of Brassica napus L., 25 B. napus lines with different genetic background were treated with four concentrations (0, 1, 5 and 10 mg/L) of Cd, and then, their germination potential, germination rate, seedling length, main root length, seedling fresh weight, and seedling dry weight were measured. The re- sults showed that the response of the B. napus lines to Cd stress was different. With the increase of Cd concentration, the relative germination potential and relative seedling rate increased first and then decreased, and reached the maximum levels when the Cd concentration was 5 rag/L. The inhibitory effects of Cd stress on seedling growth indices in a decreasing order were root length〉seedling length〉 seedling fresh weight〉seedling water content. There were extremely significant differ- ences in the relative root length, relative seedling length, relative seedling fresh weight and relative seedling water content among the B. napus lines treated by dif- ferent concentrations of Cd, while there were no significant differences in the rela- tive germination potential and relative seedling rate among the lines, except that the relative seedling rate was significantly different among the lines treated by 5 mg/L Cd. The results suggested that seedling growth was more sensitive than seed ger- mination to heavy metal stress.
文摘The stimulative effect of trace elements on seed germination and seedling growth of Pinus tabulaeformis was tested. The experiments were carried out on seed soak and topdressing with different trace elements and varied concentrations at the nursery of Gardens Research Institute, Harbin, in 2000-2001. The experimental results showed that soaking seed with 1% and 0.2% concentrations of Mn element produced best result for seed germination, and the germination rate was increased by 9%~19% for the seeds treated with 1% concentration and 12%~14% for the seeds treated with 0.2% concentration compared with the control group. The seeds treated with boron element had lowest germination rate. For trace element topdressing, Mn and Mo elements presented good result for seedling growth and the treatment with low concentration was even better. The height or chlorophyll content of the seedlings with spray of low-concentration Mn and Mo element was much higher than that of untreated ones. In the contrast to the treating method of seed soak, topdressing (application of spraying on foliage) had evident effect on seedling growth.
基金Supported by China Spark Program for Science and Technology(2011GA740072)Shandong Provincial Soft Scientific Research Project(2015RKC35001)Shandong Provincial Agricultural High-quality Seed Engineering(2016LZGC019)~~
文摘With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amylase ac- tivities of seeds significantly, which accelerated the transformation process of en- dosperm starch to soluble sugar, resulting in emergence of 36 hours in advance under low temperature condition. Germination rate and germination potential of magnetized water soaking were higher than the contrast by 6.7% and 10.0%, which helped cultivate vigorous seedling.
文摘[Objective] This study aimed to provide the theoretical and technical basis for alleviating salt damages in production practice of oil sunflower (Helianthus annuus). [Method] Seeds of oil sunflower were used as experimental materials and treated with 120 mmol/L NaCI solution and 0-200 mg/L Vc solution during the germina- tion process, to investigate the effects of exogenous Vc on seed germination and physiological properties of oil sunflower under salt stress. [Result] Under salt stress, with the increase of Vc concentration, germination potential and germination rate of oil sunflower seeds, superoxide dismutase (SOD) and peroxidase (POD) activities and proline (Pro) content of oil sunflower seedlings increased first and then declined, which reached the maixmum in 80 mg/L Vc treatment, 120 mg/L Vc treatment and 80 mg/L Vc treatment, respectively; malondialdehyde (MDA) content of oil sunflower seedlings declined first and then increased, which reached the minimum in 160 mg/L Vc treatment. [Conclusion] To varying degrees, Vc could improve germination potential and germination rate of oil sunflower seeds and promote seedling growth under salt stress, thus alleviating the damages of salt stress to seed germination and seedling growth of oil sunflower.