Seed number per silique(SNPS)is one of seed yield components in rapeseed,but its genetic mechanism remains elusive.Here a double haploid(DH)population derived from a hybrid between female 6Q006with 35–40 SNPS and mal...Seed number per silique(SNPS)is one of seed yield components in rapeseed,but its genetic mechanism remains elusive.Here a double haploid(DH)population derived from a hybrid between female 6Q006with 35–40 SNPS and male 6W26 with 10–15 SNPS was investigated for SNPS in the year 2017,2018,2019 and 2021,and genotyped with Brassica 60K Illumina Infinium SNP array.An overlapping major QTL(qSNPS.C09)explaining 51.50%of phenotypic variance on average was narrowed to a 0.90 Mb region from 44.87 Mb to 45.77 Mb on chromosome C09 by BSA-seq.Subsequently,two DEGs in this interval were detected between extreme individuals in DH and F_2populations by transcriptome sequencing at7 and 14 days after pollination siliques.Of which,BnaC09g45400D encoded an adenine phosphoribosyltransferase 5(APT5)has a 48-bp InDel variation in the promoter of two parents.Candidate gene association analysis showed that this InDel variation was associated with SNPS in a nature population of rapeseed,where 54 accessions carrying the same haplotype as parent 6Q006 had higher SNPS than103 accessions carrying the same haplotype as parent 6W26.Collectively,the findings are helpful for rapeseed molecular breeding of SNPS,and provide new insight into the genetic and molecular mechanism of SNPS in rapeseed.展开更多
The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait ...The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait loci(QTL) for number of seeds per pod(NSP),number of pods per plant(NPP), and numbers of one-, two-, and three-seeded pods per plant(N1 PP, N2 PP, and N3 PP) in four environments. A total of 28 consensus QTL and 14 single QTL were identified, including 11 major and stable QTL. Four major and stable QTL including qN3 PPA5.2, q N3 PPA5.4, qN3 PPA5.5, and qN3 PPA5.7 each explained 12.3%–33.0% of phenotype variation. By use of another integrated linkage map for the A5 group(hereafter referred to as INT A5 group), QTL for PSNT were located in seven intervals of 0.73–9.68 Mb in length on chromosome A05, and candidate genes underlying N3 PP were suggested. These findings shed light on the genetic basis of PSNT. Major QTL for N3 PP could be used as candidates for further positional cloning.展开更多
Asparagus officinalis L.is favored by its high health function,but its hybrid seeds are expensive.The amount of seed,seed plumpness and germination rate are related to the production costs of breeding enterprises and ...Asparagus officinalis L.is favored by its high health function,but its hybrid seeds are expensive.The amount of seed,seed plumpness and germination rate are related to the production costs of breeding enterprises and large growers.Therefore,it is necessary to investigate the seed number and thousand kernel weight of A.officinalis L.This study developed a quick and accurate method to measure the seed number and thousand kernel weight of A.officinalis L.using image processing technology.Seed sample of A.officinalis L.was scanned with 200 dpi resolution,and the seed number was then obtained using Image-ProPlus software.After weighing the seeds,thousand kernel weight was finally calculated.By recording‘macro’,the batch processing of the samples can also be realized.This method is simple and accurate,and can greatly save the time of investigation.展开更多
Ovule and seed developments are crucial processes during plant growth, which are affected by different signaling pathways. In this paper, we demonstrate that the brassinosteroid (BR) signal is involved in ovule init...Ovule and seed developments are crucial processes during plant growth, which are affected by different signaling pathways. In this paper, we demonstrate that the brassinosteroid (BR) signal is involved in ovule initiation and development. Ovule and seed numbers are significantly different when comparing BR-related mutants to wild-type con-trols. Detailed observation indicates that BR regulates the expression level of genes related to ovule development, includ-ing HLL, ANT, and AP2, either directly by targeting the promoter sequences or indirectly via regulation by BR-induced transcription factor BZR1. Also, Western blot demonstrates that the dephosphorylation level of BZR1 is consistent with ovule and seed number. The intragenic bzrl-lD suppressors bzs247 and bzs248 have much fewer ovules and seeds than bzrl-lD, which are similar to wild-type, suggesting that the phenotype can be rescued. The molecular and genetic experi-ments confirm that BZR1 and AP2 probably affect Arabidopsis ovule number determination antagonistically.展开更多
Ovule initiation is a key step that strongly influences ovule number and seed yield.Notably,mutants with enhanced brassinosteroid(BR)and cytokinin(CK)signaling produce more ovules and have a higher seed number per sil...Ovule initiation is a key step that strongly influences ovule number and seed yield.Notably,mutants with enhanced brassinosteroid(BR)and cytokinin(CK)signaling produce more ovules and have a higher seed number per silique(SNS)than wild-type plants.Here,we crossed BR-and CKrelated mutants to test whether these phytohormones function together in ovule initiation.We determined that simultaneously enhancing BR and CK contents led to higher ovule and seed numbers than enhancing BR or CK separately,and BR and CK enhanced each other.Further,the BR-response transcription factor BZR1 directly interacted with the CK-response transcription factor ARABIDOPSIS RESPONSE REGULATOR1(ARR1).Treatments with BR or BR plus CK strengthened this interaction and subsequent ARR1 targeting and induction of downstream genes to promote ovule initiation.Enhanced CK signaling partially rescued the reduced SNS phenotype of BR-deficient/insensitive mutants whereas enhanced BR signaling failed to rescue the low SNS of CK-deficient mutants,suggesting that BR regulates ovule initiation and SNS through CK-mediated and-independent pathways.Our study thus reveals that interaction between BR and CK promotes ovule initiation and increases seed number,providing important clues for increasing the seed yield of dicot crops.展开更多
[Objectives]This study was conducted to construct high-yielding,high-quality,and high-light-efficiency population structures of different types of rice varieties.[Methods]The effects of plant spacing,row spacing and s...[Objectives]This study was conducted to construct high-yielding,high-quality,and high-light-efficiency population structures of different types of rice varieties.[Methods]The effects of plant spacing,row spacing and seedling number allocation on stems and tillers,leaf area and dynamic traits of high-yielding rice populations(more than 9750 kg/hm^(2))and low-yielding populations(less than 9750 kg/hm^(2))were studied by two kinds of representative rice varieties with different tiller ability and panicle sizes in cold regions.[Results]Decreasing the plant and row spacing and increasing the number of planted seedlings per hole advanced the heading date and made the number of stems and tillers in the population increase.The impact on the super rice variety with fewer tillers and heavier panicles was greater than that of conventional variety with more tillers and lighter panicles.The stems and tillers of the high-yielding high-quality populations grew steadily in the early stage of development,until an appropriate number of panicles was reached at the critical leaf age for productive tillers(June 25),and the peak seedlings should appear in the jointing stage(July 9)with a small number(that value of Longjing 21,the super rice variety with fewer tillers and heavier panicles,was about 1.2 times the expected panicle number,and that of the conventional variety with more tillers and lighter panicles,Kongyu 131,was about 1.1 times the expected panicle number).The populations gradually declined since then,until reaching an appropriate number of panicles at the heading stage.The high-yielding high-quality populations had a higher leaf area index at the heading stage.The value of Longjing 21,the super rice variety with fewer tiller and heavier panicles,reached about 6.0,and that of Kongyu 131,the conventional variety with more tillers and lighter panicles,reached about 4.5.The values decreased thereafter.At the maturation stage,the leaf area index of Longjing 21 remained above 2.5,and that of Kongyu 131 remained above 2.0.[Conclusions]This study has an important guiding role and significance for their high-yielding and high-quality supporting cultivation in cold regions.展开更多
The seeds of a soybean cultivar Zhonghuang 18 were subjected to accelerated aging for 0(population G_0-1), 112(population G_0-2), 154(population G_0-3) and 196 d(population G_0-4), whose germination percentage was fou...The seeds of a soybean cultivar Zhonghuang 18 were subjected to accelerated aging for 0(population G_0-1), 112(population G_0-2), 154(population G_0-3) and 196 d(population G_0-4), whose germination percentage was found to be 98.0%, 95.0%, 81.0%, and 79.0%, respectively. Then, the four populations were regenerated twice in the field. The first descendant populations were marked as G_1-1, G_1-2, G_1-3 and G_1-4, and the second were marked as G_2-1, G_2-2, G_2-3 and G_2-4, respectively. The genetic variation between the control population(G_0-1) and the experimental populations was analyzed using 12 AFLP primer combinations. The results showed that there was no significant difference in genetic similarity between the 11 experimental populations and the control population G_0-1. The genetic similarity between population G_2-4 and G_0-1 was still as high as 0.933 3, indicating that the F_2 generation of the population whose germination percentage was only 79.0% still had a high genetic similarity to the control population. The results of t-tests revealed that the populations G_1-1, G_2-1, G_1-2 and G_2-2 showed no significant difference from the control population G_0-1 in effective number of alleles per locus(Ae), genetic diversity index(H) and Shannon's diversity index(I), while these indices of populations G_0-3, G_0-4, G_1-3, G_1-4, G_2-3 and G_2-4 were significantly reduced. χ~2 tests indicated that the populations G_1-1 and G_2-1 showed little difference, and the populations G_0-2, G_0-3, G_0-4, G_1-2, G_1-3, G_1-4, G_2-2, G_2-3, and G_2-4 showed great difference in allele frequency distribution from the control population G_0-1, and the difference was greater when the seed viability was lower. Compared with the control population G_0-1, the number of rare alleles(Nr) of the populations G_0-2, G_1-1, G_2-1, G_1-2 and G_2-2 showed no significant difference, while that of the populations G_0-3, G_0-4, G_1-3, G_1-4, G_2-3 and G_2-4 declined obviously. These results revealed that compared with the control population, the genetic diversity and Nr for the descendant populations of the populations with 98.0% and 95.0% germination percentages did not change significantly, but declined greatly for the descendant populations of the populations with 81.0.% and 79.0% percentages. The results suggested that the decline in seed viability has a greater impact than the number of generations on genetic structure of soybean germplasm. So, it is suggested that soybean seed with an initial germination percentage of 98.0% should be regenerated before its germination percentage declines to 81.0%.展开更多
As the increases of climatic aridity and grazing intensity, shrubs play an increasingly important role in grassland ecosystem in arid and semi-arid regions, and its abundance also generally increases. However, the eff...As the increases of climatic aridity and grazing intensity, shrubs play an increasingly important role in grassland ecosystem in arid and semi-arid regions, and its abundance also generally increases. However, the effects of climatic aridity and grazing intensity on sexual reproduction of shrubs in grassland remain largely unclear. In order to understand the effects of grazing intensity and climatic drought stress, and their interaction on seed production of shrub species, we examined the seed number, seed weight and seed yield of Caragana stenophylla under three grazing intensities (fenced, mild grazing and severe grazing) across a climatic aridity gradient (semi-arid, arid, very arid and intensively arid zones) in the Inner Mongolia Steppe, northern China during 2012-2013. The seed number, seed weight and seed yield gradually increased from the semi-arid to the very arid zones, but decreased from the very arid to the intensively arid zones in fenced plots. The seed number and seed yield decreased from the semi-arid to the intensively arid zones in mild and severe grazing treatment plots, therefore, grazing enhanced the suppression effect of climatic aridity on seed production of C. stenophylla. The seed number and seed yield gradually decreased as grazing intensity increased. The seed weight was highest in severe grazing plots, followed by the mild grazing plots and then the fenced plots. Precipitation varied interannually during the study period. We observed that the seed number seed weight and seed yield were lower in the low precipitation year (2013) than in the high precipitation year (2012). As climatic drought stress increased, the negative effects of grazing on seed production of C. stenophylla also gradually increased. Our results indicated that climatic drought stress may contribute to the encroachment of C. stenophylla shrub in arid zones by promoting its seed production. However, grazing had negative effects on sexual reproduction of C. stenophylla, and the combined effects of drought stress and grazing seriously suppressed sexual reproduction of C. stenophylla in the intensively arid zone.展开更多
The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree...The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.展开更多
FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plan...FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plant life cycle,especially in seed germination,dormancy,embryo formation,seed and fruit development,and maturation.However,there is limited information about its functions in seed and fruit development of grapevine.In this study,we expressed VvFUS3 in tomato for its functional characterization.Overexpression of VvFUS3 in tomato led to a reduction in seed number and seed weight without affecting the fruit size.Histological analysis found that both cell expansion and cell division in transgenic seed and fruit pericarp have been affected.However,there were no obvious differences in pollen size,shape,and viability,suggesting that VvFUS3 affects seed development but not the pollen grains.Moreover,the expression of several genes with presumed roles in seed development and hormone signaling pathways was also influenced by VvFUS3.These results suggest that VvFUS3 is involved in hormonal signaling pathways that regulate seed number and size.In conclusion,our study provides novel preliminary information about the pivotal roles of VvFUS3 in seed and fruit development and these findings can potentially serve as a reference for molecular breeding of seedless grapes.展开更多
DNA binding with one finger (DOF) transcription factors play important roles in storage material accumulation and morphogenesis of developing seeds. Oil and protein contents varied in different cultivars in important ...DNA binding with one finger (DOF) transcription factors play important roles in storage material accumulation and morphogenesis of developing seeds. Oil and protein contents varied in different cultivars in important oil crop peanut. DOF proteins have not been studied in this crop. In this paper, we analyzed all the DOF genes expressed in developing seeds from a cDNA library with 20,000 transcripts, cloned and compared similar genes of GW391729 from eight peanut cultivars, and analyzed similar genes expressed in root and leave with control and inoculated with Ralstonia solanacearum. The results indicate that total eight types of DOF genes were expressed in developing seeds of cultivar 063103. Most of DOF transcription factors expressed involved in developmental process in a complicated way. Among them, GW391729 is possible related to the seed number in fruit, and also is possible related to leafspot resistance. Detailed function of these DOF proteins need to be further studied.展开更多
The key problem of securing multieast is to generate, distribute and update Session Encryption Key(SEK). Polynomial expansion with multi-seed (MPE) scheme is an approach which is based on Polynomial expansion (PE...The key problem of securing multieast is to generate, distribute and update Session Encryption Key(SEK). Polynomial expansion with multi-seed (MPE) scheme is an approach which is based on Polynomial expansion (PE) scheme and overcomes PE's shortage. Its operation is demonstrated by using multi-seed, the group member is partitioned to many subgroups. While updating the SEK, computation is needed only in one of subgroups, the other of them will use the computation history to update their SEK. The key problems to design a MPE scheme application includes to find a feasible one way function as well as to generate a Strict Prime Number (SPN). Those technologies with multi-seed and computation history concepts make MPE as a good choice in practical applications. A prototype test system is designed and solutions of all above mentioned problems are included in this proposed paper.展开更多
基金supported by the National Basic Research Program of China(2015CB150201)the Natural Science Foundation of Chongqing(cstc2019jcyj-bshX0055,cstc2019jcyj-zdxmX0012cstc2020jcyj-msxmX0461)。
文摘Seed number per silique(SNPS)is one of seed yield components in rapeseed,but its genetic mechanism remains elusive.Here a double haploid(DH)population derived from a hybrid between female 6Q006with 35–40 SNPS and male 6W26 with 10–15 SNPS was investigated for SNPS in the year 2017,2018,2019 and 2021,and genotyped with Brassica 60K Illumina Infinium SNP array.An overlapping major QTL(qSNPS.C09)explaining 51.50%of phenotypic variance on average was narrowed to a 0.90 Mb region from 44.87 Mb to 45.77 Mb on chromosome C09 by BSA-seq.Subsequently,two DEGs in this interval were detected between extreme individuals in DH and F_2populations by transcriptome sequencing at7 and 14 days after pollination siliques.Of which,BnaC09g45400D encoded an adenine phosphoribosyltransferase 5(APT5)has a 48-bp InDel variation in the promoter of two parents.Candidate gene association analysis showed that this InDel variation was associated with SNPS in a nature population of rapeseed,where 54 accessions carrying the same haplotype as parent 6Q006 had higher SNPS than103 accessions carrying the same haplotype as parent 6W26.Collectively,the findings are helpful for rapeseed molecular breeding of SNPS,and provide new insight into the genetic and molecular mechanism of SNPS in rapeseed.
基金supported by the National Natural Science Foundation of China(31271764,31371662,31471534,31601340,31461143022)the China's Agricultural Research System(CARS-14)+1 种基金the National Key Technology R&D Program of China(2013BAD01B03)the National Infrastructure for Crop Germplasm Resources(NICGR2017-036)
文摘The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait loci(QTL) for number of seeds per pod(NSP),number of pods per plant(NPP), and numbers of one-, two-, and three-seeded pods per plant(N1 PP, N2 PP, and N3 PP) in four environments. A total of 28 consensus QTL and 14 single QTL were identified, including 11 major and stable QTL. Four major and stable QTL including qN3 PPA5.2, q N3 PPA5.4, qN3 PPA5.5, and qN3 PPA5.7 each explained 12.3%–33.0% of phenotype variation. By use of another integrated linkage map for the A5 group(hereafter referred to as INT A5 group), QTL for PSNT were located in seven intervals of 0.73–9.68 Mb in length on chromosome A05, and candidate genes underlying N3 PP were suggested. These findings shed light on the genetic basis of PSNT. Major QTL for N3 PP could be used as candidates for further positional cloning.
基金Modern Agricultural Industry Technology System Project(CARS-23-G-05)Modern Agricultural Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2019-3-2-1)the Third Batch of"Giant Plan"Vegetable Scientific Research and Innovation Team Project in Hebei Province.
文摘Asparagus officinalis L.is favored by its high health function,but its hybrid seeds are expensive.The amount of seed,seed plumpness and germination rate are related to the production costs of breeding enterprises and large growers.Therefore,it is necessary to investigate the seed number and thousand kernel weight of A.officinalis L.This study developed a quick and accurate method to measure the seed number and thousand kernel weight of A.officinalis L.using image processing technology.Seed sample of A.officinalis L.was scanned with 200 dpi resolution,and the seed number was then obtained using Image-ProPlus software.After weighing the seeds,thousand kernel weight was finally calculated.By recording‘macro’,the batch processing of the samples can also be realized.This method is simple and accurate,and can greatly save the time of investigation.
文摘Ovule and seed developments are crucial processes during plant growth, which are affected by different signaling pathways. In this paper, we demonstrate that the brassinosteroid (BR) signal is involved in ovule initiation and development. Ovule and seed numbers are significantly different when comparing BR-related mutants to wild-type con-trols. Detailed observation indicates that BR regulates the expression level of genes related to ovule development, includ-ing HLL, ANT, and AP2, either directly by targeting the promoter sequences or indirectly via regulation by BR-induced transcription factor BZR1. Also, Western blot demonstrates that the dephosphorylation level of BZR1 is consistent with ovule and seed number. The intragenic bzrl-lD suppressors bzs247 and bzs248 have much fewer ovules and seeds than bzrl-lD, which are similar to wild-type, suggesting that the phenotype can be rescued. The molecular and genetic experi-ments confirm that BZR1 and AP2 probably affect Arabidopsis ovule number determination antagonistically.
基金funded by the National Natural Science Foundation of China(31771591,32070342,and 31761163003)Project MDS-JF-2020-8 supported by the Shanghai Jiao Tong University JiRLMDS Joint Research Fund+2 种基金the Agri-X Interdisciplinary Fund of Shanghai Jiao Tong University(Agri-X20200204 and Agri-X2017006)the Bio-X Interdisciplinary Fund of Shanghai Jiao Tong University(20CX-04)the Scientific and Technological Innovation Funds of Shanghai Jiao Tong University(19×160020009)。
文摘Ovule initiation is a key step that strongly influences ovule number and seed yield.Notably,mutants with enhanced brassinosteroid(BR)and cytokinin(CK)signaling produce more ovules and have a higher seed number per silique(SNS)than wild-type plants.Here,we crossed BR-and CKrelated mutants to test whether these phytohormones function together in ovule initiation.We determined that simultaneously enhancing BR and CK contents led to higher ovule and seed numbers than enhancing BR or CK separately,and BR and CK enhanced each other.Further,the BR-response transcription factor BZR1 directly interacted with the CK-response transcription factor ARABIDOPSIS RESPONSE REGULATOR1(ARR1).Treatments with BR or BR plus CK strengthened this interaction and subsequent ARR1 targeting and induction of downstream genes to promote ovule initiation.Enhanced CK signaling partially rescued the reduced SNS phenotype of BR-deficient/insensitive mutants whereas enhanced BR signaling failed to rescue the low SNS of CK-deficient mutants,suggesting that BR regulates ovule initiation and SNS through CK-mediated and-independent pathways.Our study thus reveals that interaction between BR and CK promotes ovule initiation and increases seed number,providing important clues for increasing the seed yield of dicot crops.
基金Natural Science Foundation of Heilongjiang Province(LH2019C063)"Agricultural Science and Technology Innovation Project"of Heilongjiang Academy of Agriculture Sciences(HNK2019CX12-08)+1 种基金Academy-level Project of Heilongjiang Academy of Agriculture Sciences(2020YYYF021)National Key R&D Project(2017YFD0300505-4).
文摘[Objectives]This study was conducted to construct high-yielding,high-quality,and high-light-efficiency population structures of different types of rice varieties.[Methods]The effects of plant spacing,row spacing and seedling number allocation on stems and tillers,leaf area and dynamic traits of high-yielding rice populations(more than 9750 kg/hm^(2))and low-yielding populations(less than 9750 kg/hm^(2))were studied by two kinds of representative rice varieties with different tiller ability and panicle sizes in cold regions.[Results]Decreasing the plant and row spacing and increasing the number of planted seedlings per hole advanced the heading date and made the number of stems and tillers in the population increase.The impact on the super rice variety with fewer tillers and heavier panicles was greater than that of conventional variety with more tillers and lighter panicles.The stems and tillers of the high-yielding high-quality populations grew steadily in the early stage of development,until an appropriate number of panicles was reached at the critical leaf age for productive tillers(June 25),and the peak seedlings should appear in the jointing stage(July 9)with a small number(that value of Longjing 21,the super rice variety with fewer tillers and heavier panicles,was about 1.2 times the expected panicle number,and that of the conventional variety with more tillers and lighter panicles,Kongyu 131,was about 1.1 times the expected panicle number).The populations gradually declined since then,until reaching an appropriate number of panicles at the heading stage.The high-yielding high-quality populations had a higher leaf area index at the heading stage.The value of Longjing 21,the super rice variety with fewer tiller and heavier panicles,reached about 6.0,and that of Kongyu 131,the conventional variety with more tillers and lighter panicles,reached about 4.5.The values decreased thereafter.At the maturation stage,the leaf area index of Longjing 21 remained above 2.5,and that of Kongyu 131 remained above 2.0.[Conclusions]This study has an important guiding role and significance for their high-yielding and high-quality supporting cultivation in cold regions.
基金Supported by Key Project of the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(2013BAD01B0106)the Special Scientific Research Fund of Shandong Academy of Agricultural Sciences for Young Scholars(2016YQN19)+4 种基金China Agriculture Research System-Green Manure(CARS-22)National Crop Germplasm Resources Platform of China(2012/2013-032)Major Scientific and Technological Innovation Project of Shandong Province(2017CXGC0311)Modern Agricultural Industry Technology System of Shandong Province(SDAIT-15-01)Special Fund of Shandong Academy of Agricultural Sciences for Innovation in Agricultural Science and Technology(CXGC2018E15)
文摘The seeds of a soybean cultivar Zhonghuang 18 were subjected to accelerated aging for 0(population G_0-1), 112(population G_0-2), 154(population G_0-3) and 196 d(population G_0-4), whose germination percentage was found to be 98.0%, 95.0%, 81.0%, and 79.0%, respectively. Then, the four populations were regenerated twice in the field. The first descendant populations were marked as G_1-1, G_1-2, G_1-3 and G_1-4, and the second were marked as G_2-1, G_2-2, G_2-3 and G_2-4, respectively. The genetic variation between the control population(G_0-1) and the experimental populations was analyzed using 12 AFLP primer combinations. The results showed that there was no significant difference in genetic similarity between the 11 experimental populations and the control population G_0-1. The genetic similarity between population G_2-4 and G_0-1 was still as high as 0.933 3, indicating that the F_2 generation of the population whose germination percentage was only 79.0% still had a high genetic similarity to the control population. The results of t-tests revealed that the populations G_1-1, G_2-1, G_1-2 and G_2-2 showed no significant difference from the control population G_0-1 in effective number of alleles per locus(Ae), genetic diversity index(H) and Shannon's diversity index(I), while these indices of populations G_0-3, G_0-4, G_1-3, G_1-4, G_2-3 and G_2-4 were significantly reduced. χ~2 tests indicated that the populations G_1-1 and G_2-1 showed little difference, and the populations G_0-2, G_0-3, G_0-4, G_1-2, G_1-3, G_1-4, G_2-2, G_2-3, and G_2-4 showed great difference in allele frequency distribution from the control population G_0-1, and the difference was greater when the seed viability was lower. Compared with the control population G_0-1, the number of rare alleles(Nr) of the populations G_0-2, G_1-1, G_2-1, G_1-2 and G_2-2 showed no significant difference, while that of the populations G_0-3, G_0-4, G_1-3, G_1-4, G_2-3 and G_2-4 declined obviously. These results revealed that compared with the control population, the genetic diversity and Nr for the descendant populations of the populations with 98.0% and 95.0% germination percentages did not change significantly, but declined greatly for the descendant populations of the populations with 81.0.% and 79.0% percentages. The results suggested that the decline in seed viability has a greater impact than the number of generations on genetic structure of soybean germplasm. So, it is suggested that soybean seed with an initial germination percentage of 98.0% should be regenerated before its germination percentage declines to 81.0%.
基金supported by the National Natural Science Foundation of China(31570453,31170381,31270502,31300386)the PhD Candidate Research Innovation Fund of Nankai Universitythe Doctoral Fund of Tianjin Normal University(52XB1208)
文摘As the increases of climatic aridity and grazing intensity, shrubs play an increasingly important role in grassland ecosystem in arid and semi-arid regions, and its abundance also generally increases. However, the effects of climatic aridity and grazing intensity on sexual reproduction of shrubs in grassland remain largely unclear. In order to understand the effects of grazing intensity and climatic drought stress, and their interaction on seed production of shrub species, we examined the seed number, seed weight and seed yield of Caragana stenophylla under three grazing intensities (fenced, mild grazing and severe grazing) across a climatic aridity gradient (semi-arid, arid, very arid and intensively arid zones) in the Inner Mongolia Steppe, northern China during 2012-2013. The seed number, seed weight and seed yield gradually increased from the semi-arid to the very arid zones, but decreased from the very arid to the intensively arid zones in fenced plots. The seed number and seed yield decreased from the semi-arid to the intensively arid zones in mild and severe grazing treatment plots, therefore, grazing enhanced the suppression effect of climatic aridity on seed production of C. stenophylla. The seed number and seed yield gradually decreased as grazing intensity increased. The seed weight was highest in severe grazing plots, followed by the mild grazing plots and then the fenced plots. Precipitation varied interannually during the study period. We observed that the seed number seed weight and seed yield were lower in the low precipitation year (2013) than in the high precipitation year (2012). As climatic drought stress increased, the negative effects of grazing on seed production of C. stenophylla also gradually increased. Our results indicated that climatic drought stress may contribute to the encroachment of C. stenophylla shrub in arid zones by promoting its seed production. However, grazing had negative effects on sexual reproduction of C. stenophylla, and the combined effects of drought stress and grazing seriously suppressed sexual reproduction of C. stenophylla in the intensively arid zone.
基金Special Fund of National Seismological Bureau,China(No.201208005)Doctorial Innovation Fund of Northeast Normal University(No.10SSXT133,2412013XS001)+1 种基金National Natural Science Foundation of China(No.41171038,41171072,41101523)Doctoral Fund of Ministry of Education of China(No.20120043110014)
文摘The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1603234)the Program for Innovative Research Team of Grape Germplasm Resources and Breeding(Grant No.2013KCT-25).
文摘FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plant life cycle,especially in seed germination,dormancy,embryo formation,seed and fruit development,and maturation.However,there is limited information about its functions in seed and fruit development of grapevine.In this study,we expressed VvFUS3 in tomato for its functional characterization.Overexpression of VvFUS3 in tomato led to a reduction in seed number and seed weight without affecting the fruit size.Histological analysis found that both cell expansion and cell division in transgenic seed and fruit pericarp have been affected.However,there were no obvious differences in pollen size,shape,and viability,suggesting that VvFUS3 affects seed development but not the pollen grains.Moreover,the expression of several genes with presumed roles in seed development and hormone signaling pathways was also influenced by VvFUS3.These results suggest that VvFUS3 is involved in hormonal signaling pathways that regulate seed number and size.In conclusion,our study provides novel preliminary information about the pivotal roles of VvFUS3 in seed and fruit development and these findings can potentially serve as a reference for molecular breeding of seedless grapes.
文摘DNA binding with one finger (DOF) transcription factors play important roles in storage material accumulation and morphogenesis of developing seeds. Oil and protein contents varied in different cultivars in important oil crop peanut. DOF proteins have not been studied in this crop. In this paper, we analyzed all the DOF genes expressed in developing seeds from a cDNA library with 20,000 transcripts, cloned and compared similar genes of GW391729 from eight peanut cultivars, and analyzed similar genes expressed in root and leave with control and inoculated with Ralstonia solanacearum. The results indicate that total eight types of DOF genes were expressed in developing seeds of cultivar 063103. Most of DOF transcription factors expressed involved in developmental process in a complicated way. Among them, GW391729 is possible related to the seed number in fruit, and also is possible related to leafspot resistance. Detailed function of these DOF proteins need to be further studied.
基金Supported by the National Natural Science Foun-dation of China (60473072)
文摘The key problem of securing multieast is to generate, distribute and update Session Encryption Key(SEK). Polynomial expansion with multi-seed (MPE) scheme is an approach which is based on Polynomial expansion (PE) scheme and overcomes PE's shortage. Its operation is demonstrated by using multi-seed, the group member is partitioned to many subgroups. While updating the SEK, computation is needed only in one of subgroups, the other of them will use the computation history to update their SEK. The key problems to design a MPE scheme application includes to find a feasible one way function as well as to generate a Strict Prime Number (SPN). Those technologies with multi-seed and computation history concepts make MPE as a good choice in practical applications. A prototype test system is designed and solutions of all above mentioned problems are included in this proposed paper.