光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有...光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有良好的化学稳定性、合适的带隙(~2.1 eV)、无毒、储量丰富等优点而成为最有前途的光阳极材料之一.然而,α-Fe_(2)O_(3)丰富的受体表面态和缓慢的水氧化动力学导致光生电荷复合严重,限制了其在光电化学中的实际应用.因此,有必要对α-Fe_(2)O_(3)进行表面工程设计以提高水氧化效率.本文提出了一种新方法,以金属有机框架(Ti-MOFs)为模板,在Ti-Fe_(2)O_(3)表面煅烧合成TiO_(2)层,然后将富活性位点的ZIF-67加载在TiO_(2)/Ti-Fe_(2)O_(3)上作为助催化剂,制备出具有较好光电化学性能的ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极.X射线衍射、高分辨透射电镜、X射线光电子能谱和拉曼光谱等表征结果证实成功合成了ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3).同时,氮气等温吸附脱附曲线和表面接触角测试结果表明,MOFs衍生的TiO_(2)为介孔材料.采用表面光伏技术、光致发光光谱、飞秒-瞬态吸收光谱和电化学阻抗谱分析,研究了光生电荷的分离和复合行为.结果表明,MOFs衍生的TiO_(2)不仅可以作为钝化层有效抑制了表面复合,还作为Ti-Fe_(2)O_(3)的电子阻挡层,显著减少了电子向表面的流失,从而大大提高了Ti-Fe_(2)O_(3)表面和体相的电荷分离效率.进一步的累积电荷量测试、电化学阻抗谱和Bode图分析显示,负载MOFs衍生TiO_(2)后,可以明显促进光生空穴向电解质的注入,其多孔结构也可以增加反应接触面积,这有利于光生电荷在固液界面传输.此外,理论计算结果表明,Ti-Fe_(2)O_(3)水氧化速控步骤的能垒(ΔG=3.38 eV)明显高于TiO_(2)(ΔG=1.67 eV),说明OER更容易在TiO_(2)/Ti-Fe_(2)O_(3)表面发生,这与其光电流密度结果一致.为进一步提高反应活性和加快水氧化动力学,负载助催化剂ZIF-67后,ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极实现了较好的光电化学性能,其在1.23 V vs.RHE时光电流密度高达4.04 mA cm^(‒2),是Ti-Fe_(2)O_(3)的9.3倍,并且复合光阳极的入射光子电流转换效率和空穴注入效率分别达到93%(390 nm)和91%.综上所述,本研究通过MOFs衍生的TiO_(2)和ZIF-67助催化剂改性α-Fe_(2)O_(3)光阳极,显著提升了其光电化学水氧化性能.其中,MOFs衍生TiO_(2)不仅优化了电荷分离,还促进了光生空穴的注入,从而显著提高其光电化学水氧化性能.本研究为构筑高性能的有机-无机杂化光阳极提供了新思路.展开更多
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,...As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).展开更多
Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.E...Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V.展开更多
Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourie...Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.展开更多
The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined condit...The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites.展开更多
Five experimental self-shielded flux cored wires are fabricated withdifferent amount of Fe_2O_3 in the flux. The effect of Fe_2O_3 on welding technology and mechanicalproperties of weld metals deposited by these wires...Five experimental self-shielded flux cored wires are fabricated withdifferent amount of Fe_2O_3 in the flux. The effect of Fe_2O_3 on welding technology and mechanicalproperties of weld metals deposited by these wires are studied. The results show that with theincrease of Fe_2O_3 in the mix, the melting point of the pretreated mix is increased. LiBaF_3 andBaFe_(12)O_(19), which are very low in inherent moisture, are formed after the pretreatment. Themechanical properties are evaluated to the weld metals. The low temperature notch toughness of theweld metals is increased linearly with the Fe_2O_3 content in the flux due to the balance betweenFe_2O_3 and residual Al in the weld metal. The optimum Fe_2O_3 content in flux is 2.5 percent approx3.5 percent.展开更多
A thin PVA/FeCl_3 composite fiber was prepared by using sol-gel processing and electrospinning techniques. A nanofiber of α-Fe_2O_3 with the diameter of 50_150 nm was obtained via high temperature calcination of the ...A thin PVA/FeCl_3 composite fiber was prepared by using sol-gel processing and electrospinning techniques. A nanofiber of α-Fe_2O_3 with the diameter of 50_150 nm was obtained via high temperature calcination of the PVA/FeCl_3 composite fiber. The material was characterized by infra-red(IR) spectroscopy, X-ray diffraction(XRD), and scanning electron microscopy(SEM). The results show that the fiber after the calcination at 700 ℃ was a pure α-Fe_2O_3 nanofiber.展开更多
Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier t...Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy and vibrating sample magnetometry,respectively.Photocatalytic performance of the straw@Fe_(3)O_(4)/Cu_(2)O was evaluated by measuring the degradation of methyl orange(MO)under irradiation of visible light.The introduction of Fe3O4 not only endowed the straw@Fe_(3)O_(4)/Cu_(2)O with magnetic separation feature but also significantly enhanced photocatalytic activity because Fe3O4 could prevent recombination of hole-electron pairs.The active species capture experiment showed that holes(h+),hydroxyl(∙OH)and superoxide(∙O2ˉ)radicals all took part in the MO degradation.In addition,the photocatalytic mechanism of straw@Fe_(3)O_(4)/Cu_(2)O was proposed based on the experimental results.After five cycles for the photodegradation of MO,the straw@Fe_(3)O_(4)/Cu_(2)O still displayed good photocatalytic activity,suggesting that the as-prepared composite had great potential for practical use in wastewater treatment.展开更多
The lap joint of T2 copper plate and 1060 pure aluminum plate was made by using the plasma arc welding method with adding Fe_(2)O_(3)nanoparticles in different proportions.The research analysis found that the thicknes...The lap joint of T2 copper plate and 1060 pure aluminum plate was made by using the plasma arc welding method with adding Fe_(2)O_(3)nanoparticles in different proportions.The research analysis found that the thickness of the IMC(intermetallic compound)and eutect-ic region decreased after the addition of nanoparticles due to its inhibitory effect.When the proportion of Fe_(2)O_(3)nanoparticles is 3%,the in-terface intermetallic compound layer is the thinnest.However,after this ratio is continuously increased,the inhibition effect is weakened by the agglomeration of nanoparticles,and the thickness begins to increase significantly.The mechanical and electrical properties of the joint are mainly affected by the thickness of the IMC layer.Excessive nanoparticles are agglomerated into large particles with high resistivity.Therefore,the tensile strength and relative electrical conductivity of the joint are first increasing and then decreasing with the increase of nanoparticle ratio.When the proportion of nanoparticles is 3%,the tensile strength and electrical conductivity are maximum.展开更多
文摘光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有良好的化学稳定性、合适的带隙(~2.1 eV)、无毒、储量丰富等优点而成为最有前途的光阳极材料之一.然而,α-Fe_(2)O_(3)丰富的受体表面态和缓慢的水氧化动力学导致光生电荷复合严重,限制了其在光电化学中的实际应用.因此,有必要对α-Fe_(2)O_(3)进行表面工程设计以提高水氧化效率.本文提出了一种新方法,以金属有机框架(Ti-MOFs)为模板,在Ti-Fe_(2)O_(3)表面煅烧合成TiO_(2)层,然后将富活性位点的ZIF-67加载在TiO_(2)/Ti-Fe_(2)O_(3)上作为助催化剂,制备出具有较好光电化学性能的ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极.X射线衍射、高分辨透射电镜、X射线光电子能谱和拉曼光谱等表征结果证实成功合成了ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3).同时,氮气等温吸附脱附曲线和表面接触角测试结果表明,MOFs衍生的TiO_(2)为介孔材料.采用表面光伏技术、光致发光光谱、飞秒-瞬态吸收光谱和电化学阻抗谱分析,研究了光生电荷的分离和复合行为.结果表明,MOFs衍生的TiO_(2)不仅可以作为钝化层有效抑制了表面复合,还作为Ti-Fe_(2)O_(3)的电子阻挡层,显著减少了电子向表面的流失,从而大大提高了Ti-Fe_(2)O_(3)表面和体相的电荷分离效率.进一步的累积电荷量测试、电化学阻抗谱和Bode图分析显示,负载MOFs衍生TiO_(2)后,可以明显促进光生空穴向电解质的注入,其多孔结构也可以增加反应接触面积,这有利于光生电荷在固液界面传输.此外,理论计算结果表明,Ti-Fe_(2)O_(3)水氧化速控步骤的能垒(ΔG=3.38 eV)明显高于TiO_(2)(ΔG=1.67 eV),说明OER更容易在TiO_(2)/Ti-Fe_(2)O_(3)表面发生,这与其光电流密度结果一致.为进一步提高反应活性和加快水氧化动力学,负载助催化剂ZIF-67后,ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极实现了较好的光电化学性能,其在1.23 V vs.RHE时光电流密度高达4.04 mA cm^(‒2),是Ti-Fe_(2)O_(3)的9.3倍,并且复合光阳极的入射光子电流转换效率和空穴注入效率分别达到93%(390 nm)和91%.综上所述,本研究通过MOFs衍生的TiO_(2)和ZIF-67助催化剂改性α-Fe_(2)O_(3)光阳极,显著提升了其光电化学水氧化性能.其中,MOFs衍生TiO_(2)不仅优化了电荷分离,还促进了光生空穴的注入,从而显著提高其光电化学水氧化性能.本研究为构筑高性能的有机-无机杂化光阳极提供了新思路.
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金supported by the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(MSIT)(RS2023-00235596)and ERC Center(2022R1A5A1033719)。
文摘As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).
基金supported by the National Natural Science Foundation of China(52172201,51732005,51902118,and 52102249)the China Postdoctoral Science Foundation(2019M662609and 2020T130217)for financial support。
文摘Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V.
基金This work was supported by the National Natural Science Foundation of China(No.61673004 and No.11472048)the Fundamental Research Funds for the Central Universities of China(XK1802-4).
文摘Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.
基金supported by National Nature Science Foundation of China(No.22075230)the financial support of the doctoral research foundation(No.19ZX7102)from Southwest University of Science and Technology。
文摘The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites.
文摘Five experimental self-shielded flux cored wires are fabricated withdifferent amount of Fe_2O_3 in the flux. The effect of Fe_2O_3 on welding technology and mechanicalproperties of weld metals deposited by these wires are studied. The results show that with theincrease of Fe_2O_3 in the mix, the melting point of the pretreated mix is increased. LiBaF_3 andBaFe_(12)O_(19), which are very low in inherent moisture, are formed after the pretreatment. Themechanical properties are evaluated to the weld metals. The low temperature notch toughness of theweld metals is increased linearly with the Fe_2O_3 content in the flux due to the balance betweenFe_2O_3 and residual Al in the weld metal. The optimum Fe_2O_3 content in flux is 2.5 percent approx3.5 percent.
基金Supported by the Natural Science Foundation of Jilin Province(No.2 0 0 2 0 6 13)
文摘A thin PVA/FeCl_3 composite fiber was prepared by using sol-gel processing and electrospinning techniques. A nanofiber of α-Fe_2O_3 with the diameter of 50_150 nm was obtained via high temperature calcination of the PVA/FeCl_3 composite fiber. The material was characterized by infra-red(IR) spectroscopy, X-ray diffraction(XRD), and scanning electron microscopy(SEM). The results show that the fiber after the calcination at 700 ℃ was a pure α-Fe_2O_3 nanofiber.
基金Science and Technology Project from Ministry of Housing and Urban-Rural Development of the People’s Republic of China(No.2014-K7-007)。
文摘Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy and vibrating sample magnetometry,respectively.Photocatalytic performance of the straw@Fe_(3)O_(4)/Cu_(2)O was evaluated by measuring the degradation of methyl orange(MO)under irradiation of visible light.The introduction of Fe3O4 not only endowed the straw@Fe_(3)O_(4)/Cu_(2)O with magnetic separation feature but also significantly enhanced photocatalytic activity because Fe3O4 could prevent recombination of hole-electron pairs.The active species capture experiment showed that holes(h+),hydroxyl(∙OH)and superoxide(∙O2ˉ)radicals all took part in the MO degradation.In addition,the photocatalytic mechanism of straw@Fe_(3)O_(4)/Cu_(2)O was proposed based on the experimental results.After five cycles for the photodegradation of MO,the straw@Fe_(3)O_(4)/Cu_(2)O still displayed good photocatalytic activity,suggesting that the as-prepared composite had great potential for practical use in wastewater treatment.
基金This work was supported by the National Natural Science Foundation of China(No.52165045).
文摘The lap joint of T2 copper plate and 1060 pure aluminum plate was made by using the plasma arc welding method with adding Fe_(2)O_(3)nanoparticles in different proportions.The research analysis found that the thickness of the IMC(intermetallic compound)and eutect-ic region decreased after the addition of nanoparticles due to its inhibitory effect.When the proportion of Fe_(2)O_(3)nanoparticles is 3%,the in-terface intermetallic compound layer is the thinnest.However,after this ratio is continuously increased,the inhibition effect is weakened by the agglomeration of nanoparticles,and the thickness begins to increase significantly.The mechanical and electrical properties of the joint are mainly affected by the thickness of the IMC layer.Excessive nanoparticles are agglomerated into large particles with high resistivity.Therefore,the tensile strength and relative electrical conductivity of the joint are first increasing and then decreasing with the increase of nanoparticle ratio.When the proportion of nanoparticles is 3%,the tensile strength and electrical conductivity are maximum.