期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low Doses of Ionized Radiation and Hypomagnetic Field Alter Redox Properties of Water and Physiological Characteristics of Seeds of the Highest Plants 被引量:2
1
作者 Svetlana Stepanovna Moisa Vladimir Vladimirovich Tsetlin +1 位作者 Margarita Alexandrovna Levinskich Elena Leonidovna Nefedova 《Journal of Biomedical Science and Engineering》 2016年第8期410-418,共10页
The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of wate... The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of water was investigated. It established the reduction of seed germination both under direct and indirect effects due to water action of attenuated geomagnetic field. A negative effect of hypomagnetic field on grown characteristics of seeds under indirect effect via water was decreased by the low doses of γ-irradiation, and was increased by low doses of α-irradiation, i.e. ionized radiation was the dominant factor in their combined action. It was revealed the increasing of the value of the oxidation-reduction potential of water under the influence of low-intensive α-ir-radiation (239Pu), γ-irradiation (137Cs) and also that the magnetic induction attenuated pointing to a natural decline. The increasing of the oxidation-reduction potential value testifies about “the regular decreasing of internal energy of water molecules” and the increasing of its oxidative properties, which, in our opinion, is caused the inhibition of the germination of seeds. It is supposed that namely water is the main component in the effects of studying factors on bio-objects, which acts due to the alterations of the properties and structural content of water. 展开更多
关键词 α- and γ-Irradiation Hypomagnetic Field Oxidation-Reduction Potential of Water Physiological Characteristics of seeds of the Highest Plants
下载PDF
Physiological Responses of Limonium aureum Seeds to Ultra-drying 被引量:22
2
作者 Yi Li Hu-Yuan Feng +2 位作者 Tuo Chen Xiao-Ming Yang Li-Zhe An 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第5期569-575,共7页
The seeds of Limonium aureum (L.) Hill. were dried from 8.92% to 2.88% moisture content in a desiccating container with silica gel. After ultra-drying the seeds were accelerated aged (50 ℃, 1 month), and some phy... The seeds of Limonium aureum (L.) Hill. were dried from 8.92% to 2.88% moisture content in a desiccating container with silica gel. After ultra-drying the seeds were accelerated aged (50 ℃, 1 month), and some physiological indices, including the electrical conductivity, dehydrogenase activity, superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), ascorbate peroxidase (APX), catalase (CAT), volatile aldehydes and malondialdehyde (MDA) were tested. The results indicated that dehydrogenase, POD, SOD, GR, APX and CAT activities of the ultra-dry seeds were higher than the control seeds, while volatile aldehydes and malondialdehyde were lower than the control group. The results suggest that ultra-drying is beneficial for maintaining the vigor of L. aureum seeds at a high level. Thus, L. aureum seeds could be stored under ultra-dry conditions. 展开更多
关键词 electrical conductivity Limonium aureum seed physiological indices ultra-dry.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部