期刊文献+
共找到141,295篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Seeding Date and Density on Yield and Agronomic Traits of Millet : A Case Study of Wangu 098 Variety of Millet
1
作者 Yinting NIU Le JU +3 位作者 Peiyu CHEN Zhigang YIN Xuejie QIANG Junxia LI 《Asian Agricultural Research》 2024年第4期33-36,共4页
[Objectives]To find out a suitable cultivation technique of Wangu 098 in Nanyang area,speed up the popularization,demonstration and application of Wangu 098,and provide a theoretical and practical basis for adjusting ... [Objectives]To find out a suitable cultivation technique of Wangu 098 in Nanyang area,speed up the popularization,demonstration and application of Wangu 098,and provide a theoretical and practical basis for adjusting the planting structure and realizing the matching of improved varieties and methods.[Methods]The new self-bred millet variety Wangu 098 was used as the material,and the two-factor split zone experimental design was adopted.The effects of different sowing dates and densities on the yield,growth period and agronomic characters of millet were studied.[Results]The interaction of seeding date and density had a great effect on the yield and plant traits of millet.Millet yield was significantly and positively correlated with plant height,panicle length,single panicle weight,panicle grain weight and tiller number.[Conclusions]The reasonable combination of seeding date and density could give full play to the yield potential of millet.According to the experimental results and cultivation experience,the suitable seeding date of millet in Nanyang area is in the first and middle ten days of June,and the best density is about 750000 plants/ha.However,after June 30,the seeding millet did not tiller,so the density should be increased to more than 900000 plants/ha to obtain higher yield.In terms of cultivation and management,timely seeding,reasonable close planting,and coordination of vegetative growth and reproductive growth can make the plant tall and strong,panicle long and thick,and improve the yield of millet. 展开更多
关键词 Wangu 098 MILLET seedING date DENSITY AGRONOMIC traits yield
下载PDF
Relationship between Seed Priming Mediated Seedling Vigor and Yield Performance of Spring Wheat
2
作者 Md.Parvez Anwar Masuma Akhter +5 位作者 Sharmin Aktar Sinthia Afsana Kheya A.K.M.Mominul Islam Sabina Yeasmin Ahmed Khairul Hasan Md.Harun Or Rashid 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1159-1177,共19页
Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective see... Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective seed priming method that would ensure the potential yield of wheat in Bangladesh,two experiments were carried out from December 2021 to March 2022 at the Department of Agronomy,Bangladesh Agricultural University.Two wheat varieties namely BARI Gom-28 and BWMRI Gom-1 were subjected to a range of priming chemicals in both lab and pot tests.These compounds included the following:control(no priming),hydropriming(distilled water),10000 ppm KNO_(3),15000 ppm KNO_(3),40000 ppm Mannitol,60000 ppm Mannitol,10000 ppm NaCl,20000 ppm NaCl,100 ppm PEG,150 ppm PEG,500 ppm NaOCl,1000 ppm NaOCl,10000 ppm CaCl_(2),20000 ppm CaCl_(2),10000 ppm KCl and 20000 ppm KCl.A complete randomized design(CRD)with three repli-cations was used to set up the experiments.The results showed that BARI Gom-28 and BWMRI Gom-1 responded best to KCl priming in terms of rapid seed germination and strong seedling development.On the other hand,the best priming agents for plant growth and productivity turned out to be CaCl_(2) and KCL.The results of this study support the possibility of using seed priming as a technique to improve wheat plant development and output by raising seed emergence and survival rates. 展开更多
关键词 PRIMING seedling percentage GERMINATION growth yield WHEAT
下载PDF
Breeding and Seed Production Techniques of New Aromatic Danxiangyouzhenliang Rice Variety with Good Quality and High Yield
3
作者 Riwei HUANG Qiujun LONG +3 位作者 Zishuai SHANG Rihui HUANG Chunliang LIAO Yuechao LUO 《Asian Agricultural Research》 2024年第8期38-41,46,共5页
Danxiangyouzhenliang rice is a high-quality rice variety derived from the hybrid breeding of Danxiang 12A and Xianghuixiangmiao R133.Its unique temperature-sensitive three-line characteristics endow it with significan... Danxiangyouzhenliang rice is a high-quality rice variety derived from the hybrid breeding of Danxiang 12A and Xianghuixiangmiao R133.Its unique temperature-sensitive three-line characteristics endow it with significant advantages of high and stable yield,and its rice fragrance is exquisite and its taste is delicate.Danxiangyouzhenliang rice showed good resistance to rice blast and bacterial blight.On June 10,2021,Danxiangyouzhenliang rice passed the Guangxi Crop Variety Approval(Guishendao 2021074).Danxiangyouzhenliang rice is suitable to be planted as early and late rice in southern,central and northern Guangxi.This study summarized the breeding process and high-yielding seed production techniques of Danxiangyouzhenliang rice,in order to provide useful reference for rice breeders and growers. 展开更多
关键词 Danxiangyouzhenliang RICE seed production technology HIGH-QUALITY RICE Hybrid BREEDING TEMPERATURE-SENSITIVE three-line
下载PDF
Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China 被引量:3
4
作者 WANG Xin-yu YANG Guo-dong +4 位作者 XU Le XIANG Hong-shun YANG Chen WANG Fei PENG Shao-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1009-1020,共12页
Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season... Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR. 展开更多
关键词 direct-seeded and double-season rice grain yield nitrogen rate nitrogen use efficiency seeding rate
下载PDF
Plastic-film-side seeding,as an alternative to traditional film mulching,improves yield stability and income in maize production in semi-arid regions 被引量:2
5
作者 ZHANG Bing-chao HU Han +6 位作者 GUO Zheng-yu GONG Shuai SHEN Si LIAO Shu-hua WANG Xin ZHOU Shun-li ZHANG Zhong-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1021-1034,共14页
Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.To ameliorate the associated issues such as plastic-film residues and addi... Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.To ameliorate the associated issues such as plastic-film residues and additional labor during the“seedling release”in spring maize production,we have developed a plastic-film-side seeding(PSS)technology with the supporting machinery.In the semi-arid regions of Northwest China,a 7-year trial demonstrated that PSS increased plant number per hectare by 6547 and maize yield by 1686 kg ha–1compared with the traditional method of seeding under plastic-film mulch(PM).Two-year experiments were conducted in two semi-arid regions to further understand the effects of PSS on three important aspects of production:(i)the moisture and temperature of soil,(ii)maize development,yield output,and water use efficiency(WUE),and(iii)the revenue and plastic-film residuals in comparison with that of flat planting(CK)and PM.Continuous monitoring of the soil status demonstrated that,compared with CK,the PSS treatment significantly increased the temperature and moisture of the 0–20 cm soil in the seeding row at the early stage of maize development,and it also promoted grain yield(at 884–1089 kg ha^(–1))and WUE,achieving a similar effect as the PM treatment.Economically,the labor inputs of PSS were equal to CK,whereas the PM cost an additional 960 CNY ha–1in labor for releasing the seedlings from below the film.Overall,the PSS system increased profits by 5.83%(547 CNY ha^(–1)yr^(–1))and 8.16%(748 CNY ha^(–1)yr^(–1))compared with CK and PM,respectively.Environmentally,PSS achieved a residual film recovery rate of nearly 100%and eliminated 96 to 130 kg ha^(–1)of residual plastic-film in PM in 3–5 years of maize production.Collectively,these results show that PSS is an eco-friendly technique for improving yield stability and incomes for the sustainable production of maize in semi-arid regions. 展开更多
关键词 maize soil water content soil temperature yield plastic-film plastic-film-side seeding semi-arid region
下载PDF
Use of Unmanned Aerial System (UAS) Phenotyping to Predict Pod and Seed Yield in Organic Peanuts
6
作者 Aurora Manley Waltram Ravelombola +6 位作者 John Cason Brian Bennett Hanh Pham Emi Kimura Caroline Ruhl Waqas Ahmad Madeline Brown 《American Journal of Plant Sciences》 CAS 2023年第3期415-426,共12页
Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a health... Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection. 展开更多
关键词 PEANUT Unmanned Aerial System Vegetation Indices PHENOTYPING Pod yield seed yield
下载PDF
Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheatstraw return 被引量:3
7
作者 TIAN Jin-yu LI Shao-ping +8 位作者 CHENG Shuang LIU Qiu-yuan ZHOU Lei TAO Yu XING Zhi-peng HU Ya-jie GUO Bao-wei WEI Hai-yan ZHANG Hong-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期400-416,共17页
Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally ... Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally friendly.However,this method of rice production may produce lower yields in a rice–wheat rotation system because of its poor seedling establishment.To address this problem,we performed field experiments to determine the rice yield at five seedling density levels(B1,B2,B3,B4,and B5=100,190,280,370,and 460 seedlings m-2,respectively) and clarify the physiological basis of yield formation.We selected a representative high-quality rice variety and a multifunctional seeder that used in a typical rice–wheat rotation area in 2016 and 2018.The proportion of main stem panicle increased with increasing seedling density.There was a parabolic relationship between yield and seedling density,and the maximum yield(9.34-9.47 t ha-1) was obtained under B3.The maximum yield was associated with a higher total spikelet number m-2 and greater biomass accumulation from heading to maturity.The higher total spikelet number m-2 under B3 was attributed to an increase in panicle number m-2 compared with B1 and B2.Although the panicle numbers also increased under B4 and B5,these increases were insufficient to compensate for the reduced spikelet numbers per panicle.Lower biomass,smaller leaf area,and lower N uptake per plant from the stem elongation stage to the heading stage were partially responsible for the smaller panicle size at higher seedling density levels such as B5.The higher biomass accumulation under B3 was ascribed to the increases in the photosynthetic rate of the top three leaves m-2 of land,crop growth rate,net assimilation rate,and leaf area index.Furthermore,the B3 rice population was marked by a higher grain–leaf ratio,as well as a lower export ratio and transport ratio of biomass per stem-sheath.A quadratic function predicted that 260-290 seedlings m-2 is the optimum seedling density for achieving maximum yield.Together,these results suggested that appropriately increasing the seedling density,and thereby increasing the proportion of panicles formed by the main stem,is an effective approach for obtaining a higher yield in DDR sown using a multifunctional seeder in a rice–wheat rotation system. 展开更多
关键词 seedling density dry direct-seeded rice sown by a multifunctional seeder rice–wheat rotation system yield biomass photosynthetic capacity
下载PDF
Growth of tandem long-mat rice seedlings using controlled release fertilizers:Mechanical transplantation can be more economical and high yielding 被引量:1
8
作者 HE Wen-jun HE Bin +4 位作者 WU Bo-yang WANG Yu-hui YAN Fei-yu DING Yan-feng LI Gang-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3652-3666,共15页
The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery... The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery raising methods like tandem long-mat seedlings(TLMS)are necessary for the resource-efficient cultivation of rice.In the present study,a controlled-release fertilizer(CRF)-polymer-coated compound fertilizer with 3 months release period(PCCF-3M)was applied as seedling fertilizer(SF),and five different dosages of SF(SF-0,SF-10,SF-20,SF-30,and SF-40)were compared with an organic substrate as the control(CK).Among all SF treatments,the best results were obtained with the application of 20 g/tray of SF(SF-20),as the seedling quality and machine transplanting quality were comparable to those of CK.In contrast,the lower dosages(SF-0 and SF-10)resulted in low nitrogen content and reduced shoot growth,while the higher dosages(SF-30 and SF-40)resulted in toxicity(increased malondialdehyde accumulation)and inhibited the root growth.Similarly,SF-20 increased panicle number(5.6-7.0%)and yield(4.3-5.3%)compared with CK,which might be related to the remaining SF entangled in the roots supporting the tiller growth of rice seedlings in the field.Moreover,SF-20 reduced the seedling block weight(53.1%)and cost of seedling production(23.5%)but increased the gross margin,indicating that it was easy to handle and economical.Taken together,our results indicate that SF-20 is a cost-effective way to promote the growth and transplanting efficiency of rice seedlings.To our knowledge,this study is the first to determine the optimum dosage of CRF for the soil-less production of rice seedlings. 展开更多
关键词 machine-transplanted rice tandem long-mat seedlings controlled release fertilizer seedling quality yield
下载PDF
The structure-directing role of heterologous seeds in the synthesis of zeolite 被引量:2
9
作者 Haoyang Zhang Binyu Wang Wenfu Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期792-801,共10页
Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recen... Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite. 展开更多
关键词 ZEOLITE Heterologous seed SYNTHESIS Structure-directing effect
下载PDF
Winter wheat yield improvement by genetic gain across different provinces in China 被引量:1
10
作者 Wei Chen Jingjuan Zhang Xiping Deng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期468-483,共16页
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist... The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly. 展开更多
关键词 genetic gain winter wheat yield yield components
下载PDF
Pectin methylesterase inhibitors GhPMEI53 and AtPMEI19 improve seed germination by modulating cell wall plasticity in cotton and Arabidopsis 被引量:2
11
作者 Yayue Pei Yakong Wang +7 位作者 Zhenzhen Wei Ji Liu Yonghui Li Shuya Ma Ye Wang Fuguang Li Jun Peng Zhi Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3487-3505,共19页
The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest... The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants. 展开更多
关键词 COTTON seed germination cell wall pectin demethylesterification PMEI ABA
下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:2
12
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
下载PDF
Effectiveness of biofertilizers foliar application on yield and quality traits of flax(Linum usitatissimum L.)
13
作者 Saied El Sayed A.B.Bakry +1 位作者 O.A.Nofal M.A.Abo Horish 《Oil Crop Science》 CSCD 2024年第2期91-101,共11页
Flax is considered to be one of the most significant dual-purpose crops for oil and fiber production in Egypt and worldwide.Biofertilizers have a substantial impact on various metabolic processes,including increased p... Flax is considered to be one of the most significant dual-purpose crops for oil and fiber production in Egypt and worldwide.Biofertilizers have a substantial impact on various metabolic processes,including increased photo-synthesis,endogenous hormone levels,ion absorption,nucleic acid synthesis,and protein synthesis.These factors collectively contribute to the growth and development of plants.Therefore,this study aims to investigate how three biofertilizers(Algae extract,CMS as a by-product of yeast,and Metalosate multi minerals as amino acids)can enhance both the quantity and quality of flax seed yield under sandy soil conditions.Two field experiments were conducted at the Experimental Station of National Research Centre in Nubaria District,Behira Governorate,Egypt during two seasons(2021/2022)using a randomized complete block design(RCBD).The results revealed significant differences among all tested biofertilizers in terms of various characteristics studied in flax.Foliar application of algae extract at a rate of 1.50 mL/L resulted in an increase in seed yield(ton/ha)by 26.69%&19.89%,straw yield(ton/ha)by 8.08%&17.12%,and oil yield(kg/ha)by 47.72%&33.69%compared to the control group during both seasons respectively.Foliar applications of algae extract at a rate of 1.50 mL/L along with CMS at a rate of 5 m L/L and amino acids at a rate of 1.50 mL/L demonstrated significantly higher macronutrient contents(N,P,K),micronutrient contents(Fe,Zn,Mn),seed oil content,and protein content in flax seeds during both seasons.The highest values for seed oil content and protein content%were obtained through foliar application of amino acids at a rate of 1.50 mL/L.It can be concluded that foliar sprays with these bio-fertilizers effectively improved flax performance by increasing seed straw and oil yields,nutrients oil,protein and fatty acids seeds contents. 展开更多
关键词 FLAX Bio fertilizers seeds yield Nutrient contents Quality
下载PDF
Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage 被引量:1
14
作者 Lingxiao Zhu Hongchun Sun +8 位作者 Ranran Wang Congcong Guo Liantao Liu Yongjiang Zhang Ke Zhang Zhiying Bai Anchang Li Jiehua Zhu Cundong Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3387-3405,共19页
The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechani... The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method. 展开更多
关键词 COTTON DROUGHT MELATONIN root morphology root physiology yield
下载PDF
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions 被引量:2
15
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density MAIZE grain yield N uptake compensation effect
下载PDF
Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L. 被引量:1
16
作者 Wei Huang Ruyu Jiao +9 位作者 Hongtao Cheng Shengli Cai Jia Liu Qiong Hu Lili Liu Bao Li Tonghua Wang Mei Li Dawei Zhang Mingli Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期724-730,共7页
The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when ... The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation. 展开更多
关键词 yellow seed BnPAP2 PROANTHOCYANIDINS CRISPR/Cas9
下载PDF
Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil 被引量:1
17
作者 Minghui Cao Yan Duan +6 位作者 Minghao Li Caiguo Tang Wenjie Kan Jiangye Li Huilan Zhang Wenling Zhong Lifang Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期698-710,共13页
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif... Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies. 展开更多
关键词 FERTILIZATION manure substitution soil fertility maize yield bacterial community
下载PDF
Combining ability of Egyptian cotton(Gossypium barbadense L.)reveals genetic potential for improved yield and fiber quality
18
作者 Abdelghany Ahmed M. El-Banna Aly A.A. +5 位作者 Lamlom Sobhi F El-Sorady Gawhara A. Salama Ehab A.A. Ren Honglei Shaibu Abdulwahab S. Yehia Waleed M.B. 《Journal of Cotton Research》 CAS 2024年第2期109-122,共14页
Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati... Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton. 展开更多
关键词 Gossypium barbadense L. Combining ability seed cotton yield Fiber quality Cluster analysis Path analysis
下载PDF
Effects of paclobutrazol application on plant architecture,lodging resistance,photosynthetic characteristics,and peanut yield at different single-seed precise sowing densities
19
作者 Jihao Zhao Huajiang Lai +4 位作者 Chen Bi Mengjie Zhao Yanling Liu Xiangdong Li Dongqing Yang 《The Crop Journal》 SCIE CSCD 2023年第1期301-310,共10页
The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective pra... The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield. 展开更多
关键词 Sowing density Paclobutrazol application Lodging resistance Photosynthetic characteristics Peanut yield
下载PDF
The Effect of Organ Temperature on Total Yield of Transplanted and Direct-Seeded Rice(Oryza sativa L.)
20
作者 Ziwei Li Lifen Huang +1 位作者 Zhongyang Huo Min Jiang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第11期2999-3019,共21页
The canopy temperature of rice is an important index that directly reflects the growth and physiological state of rice,and affects the yield of rice plants to a great extent.The correlation between the temperatures of... The canopy temperature of rice is an important index that directly reflects the growth and physiological state of rice,and affects the yield of rice plants to a great extent.The correlation between the temperatures of different rice organs and canopy in different growth stages and the grain yield is complex.The stability and universality of these correlations must be verified.We conducted a pot experiment using two rice varieties and two temperature treatments(high temperature treatment was carried out at the beginning of heading stage for 10 days).We measured rice organ temperature during seven stages of growth using a high-precision infrared thermal imager.Results showed that the optimal observation period for the rice canopy temperature was 13:00.Although the rice variety did not significantly impact the canopy or organ temperature(p>0.05),the different organs and canopy exhibited significantly different temperatures(p<0.05).The correlations between the leaf,stem,panicle,canopy–air temperature differences and seed setting rate,theoretical and actual yields were the strongest during the milk stage.Among them,the correlation coefficient betweenΔT_(s) and theoretical and actual yields was the highest,the relationship between theoretical yield(Y)andΔT_(s)(X)was Y=−5.6965X+27.778,R^(2)=0.9155.Compared withΔT_(l),ΔT_(p) andΔTc,ΔT_(s) was closely related to the main traits of plants.ΔT_(s) could better reflect the growth characteristics of rice thanΔT_(c),such as dry matter accumulation(r=−0.931),SPAD(r=0.699),N concentration(r=0.714),transpiration rate(r=−0.722).In conclusion,stem temperature was more important indicator than canopy temperature.Stem temperature is a better screening index for rice breeding and cultivation management in the future. 展开更多
关键词 Planting method canopy temperature organ temperature grain yield
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部