The seedling population structure of Pteleopsis suberosa and their regeneration mechanisms were investigated in four roadside environments (graded, adjacent, intermediate and ungraded areas) along paved and unpaved ...The seedling population structure of Pteleopsis suberosa and their regeneration mechanisms were investigated in four roadside environments (graded, adjacent, intermediate and ungraded areas) along paved and unpaved roads in West Africa. A total of 203 quadrats of 2 m × 5 m in size were surveyed and placed along transects parallel to the roads. Within each quadrat, the total number of seedlings and the number of living shoots per seedling base were recorded. Regeneration mechanisms were determined by assessing basal and aerial sprouts and excavating the root systems below ground level. The results show that the total seedling density and the densities of single- and multi-stemmed individuals varied significantly (p 〈 0.05) among the four roadside environments. However, all seedlings were produced asexually; root suckers were predominant (98%) compared to water sprout (1%) and coppices (less than 1%). This study demonstrates that an intermediate level of soil disturbance from grading along paved and unpaved roads may stimulate P. suberosa regeneration by root suck- ering. Road type (paved and unpaved) did not affect seedling density, but was a highly significant variable in relation to the coppicing ability of P. suberosa populations in roadside sites. In conclusion, P. suberosa is a disturbance-tolerant species which can proliferate mainly by root suckering after roadwork disturbance.展开更多
基金Swedish International Development Cooperation Agency (Sida).
文摘The seedling population structure of Pteleopsis suberosa and their regeneration mechanisms were investigated in four roadside environments (graded, adjacent, intermediate and ungraded areas) along paved and unpaved roads in West Africa. A total of 203 quadrats of 2 m × 5 m in size were surveyed and placed along transects parallel to the roads. Within each quadrat, the total number of seedlings and the number of living shoots per seedling base were recorded. Regeneration mechanisms were determined by assessing basal and aerial sprouts and excavating the root systems below ground level. The results show that the total seedling density and the densities of single- and multi-stemmed individuals varied significantly (p 〈 0.05) among the four roadside environments. However, all seedlings were produced asexually; root suckers were predominant (98%) compared to water sprout (1%) and coppices (less than 1%). This study demonstrates that an intermediate level of soil disturbance from grading along paved and unpaved roads may stimulate P. suberosa regeneration by root suck- ering. Road type (paved and unpaved) did not affect seedling density, but was a highly significant variable in relation to the coppicing ability of P. suberosa populations in roadside sites. In conclusion, P. suberosa is a disturbance-tolerant species which can proliferate mainly by root suckering after roadwork disturbance.