期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of QTLs for rice seedling morphology under different water supply conditions 被引量:7
1
作者 Bingsong Zheng Ling Yang +2 位作者 Chuanzao Mao Youjun Huang Ping Wu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第8期473-484,共12页
The variation of seedling characteristics under different water supply conditions is strongly associated with drought resistance in rice (Oryza sativa L.) and a better elucidation of its genetics is helpful for impr... The variation of seedling characteristics under different water supply conditions is strongly associated with drought resistance in rice (Oryza sativa L.) and a better elucidation of its genetics is helpful for improving rice drought resistance. Ninety-six doubled-haploid (DH) rice lines of an indica and japonica cross were grown in both flooding and upland conditions and QTLs for morphological traits at seedling stage were examined using 208 restriction fragment length polymorphism (RFLP) and 76 microsatellite (SSR) markers. A total of 32 putative QTLs were associated with the four seedling traits: average of three adventitious root lengths (ARL), shoot height (SH), shoot biomass (SW), and root to shoot dry weight ratio (RSR). Five QTLs detected were the same under control and upland conditions. The ratio between the mean value of the seedling trait under upland and flooding conditions was used for assessing drought tolerance. A total of six QTLs for drought tolerance were detected. Comparative analysis was performed for the QTLs detected in this case and those reported from two other populations with the same upland rice variety Azucena as parent. Several identical QTLs for seedling elongation across the three populations with the positive alleles from the upland rice Azucena were detected, which suggests that the alleles of Azucena might be involved in water stress-accelerated elongation of rice under different genetic backgrounds. Five cell wall-related candidate genes for OsEXPI, OsEXP2, OsEXP4, EXT, and EGase were mapped on the intervals carrying the QTLs for seedling traits. 展开更多
关键词 Oryza sativa L. QTLs mapping seedling morphology flooding condition upland condition
下载PDF
Does a shift in shade tolerance as suggested by seedling morphology explain differences in regeneration success of northern red oak in native and introduced ranges? 被引量:1
2
作者 Peter Nosko Kerri Moreau +2 位作者 Christian Kuehne Kelly C.Major Jürgen Bauhus 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第3期949-962,共14页
Across North America, forests dominated by Quercus rubra L. (northern red oak), a moderately shade-tolerant tree species, are undergoing successional replacement by shade-tolerant competitors. Under closed canopies, Q... Across North America, forests dominated by Quercus rubra L. (northern red oak), a moderately shade-tolerant tree species, are undergoing successional replacement by shade-tolerant competitors. Under closed canopies, Q. rubra seedlings are unable to compete with these shade-tolerant species and do not recruit to upper forest strata. In Europe, natural regeneration of introduced Q. rubra is often successful despite the absence of fire, which promotes regeneration in the native range. Considering that understorey light availability is a major factor affecting recruitment of seedlings, we hypothesized that Q. rubra seedlings are more shade tolerant in the introduced range than in the native range. Morphological traits and biomass allocation patterns of seedlings indicative of shade tolerance were compared for Q. rubra and three co-occurring native species in two closed-canopy forests in the native range (Ontario, Canada) and introduced range (Baden-Württemburg, Germany). In the native range, Q. rubra allocated a greater proportion of biomass to roots, while in the introduced range, growth and allocation patterns favored the development of leaves. Q. rubra seedlings had greater annual increases in height, diameter and biomass in the introduced range. Q. rubra seedlings in the introduced range were also younger;however, they had a mean area per leaf and a total leaf area per seedling that were five times greater than seedlings in the native range. Such differences in morphological traits and allocation patterns support the hypothesis that Q. rubra expresses greater shade tolerance in the introduced range, and that natural regeneration of Q. rubra is not as limited by shade as in the native range. The ability of Q. rubra seedlings to grow faster under closed canopies in Europe may explain the discrepancy in regeneration success of this species in native and introduced ranges. Future research should confirm findings of this study over a greater geographical range in native and introduced ecosystems, and examine the genetic and environmental bases of observed differences in plant traits. 展开更多
关键词 Alien species Cross-continental study Forest regeneration Introduced species Seedling morphology Plant functional traits Quercus rubra
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部