期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于Seeds集和成对约束的半监督三支聚类集成
1
作者 姜春茂 吴鹏 李志聪 《计算机应用》 CSCD 北大核心 2023年第5期1481-1488,共8页
聚类集成使用合适的策略融合多个具有差异性的基聚类成员,能够有效提高聚类结果的稳定性、鲁棒性和准确率。当前聚类集成的研究较少利用已知的先验信息,面对复杂数据时难以刻画对象与类簇之间明确的归属关系。因此,提出一种基于Seeds集... 聚类集成使用合适的策略融合多个具有差异性的基聚类成员,能够有效提高聚类结果的稳定性、鲁棒性和准确率。当前聚类集成的研究较少利用已知的先验信息,面对复杂数据时难以刻画对象与类簇之间明确的归属关系。因此,提出一种基于Seeds集和成对约束的半监督三支聚类集成方法。首先,基于已有的标签信息提出一种新的三支标签传播算法构造基聚类成员;其次,提出一种半监督三支聚类集成框架集成基聚类成员,构造出一致性相似矩阵,并利用成对约束信息对该矩阵进行优化调整;最后,将三支谱聚类作为一致性函数对相似矩阵进行聚类,得到最终集成结果。在多个UCI真实数据集上的实验结果表明,与基于类簇的相似分区算法(CSPA)、超图分区算法(HGPA)、元类簇算法(MCLA)、标签传播算法(LPA)、Cop-Kmeans等半监督聚类集成算法相比,所提方法的归一化互信息(NMI)、调整兰德系数(ARI)和F测度在绝大多数据集上取得了最优值,获得了相对更好的聚类集成结果。 展开更多
关键词 三支决策 聚类 三支聚类 成对约束 半监督 seeds集
下载PDF
一种基于Seeds集和成对约束的半监督聚类算法 被引量:7
2
作者 常瑜 梁吉业 +1 位作者 高嘉伟 杨静 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期405-411,共7页
半监督聚类研究如何利用少量的监督信息来提高聚类性能,目前已经成为机器学习领域的一个研究热点.现有的大多数半监督聚类方法没有综合考虑Seeds集和成对约束这两种监督信息,因而提出了一种基于Seeds集和成对约束的半监督聚类算法.该算... 半监督聚类研究如何利用少量的监督信息来提高聚类性能,目前已经成为机器学习领域的一个研究热点.现有的大多数半监督聚类方法没有综合考虑Seeds集和成对约束这两种监督信息,因而提出了一种基于Seeds集和成对约束的半监督聚类算法.该算法运用Tri-training算法扩充Seeds集,结合成对约束优化Seeds集并指导聚类过程.实验结果表明,该算法能够有效提高聚类性能. 展开更多
关键词 半监督聚类 seeds集 成对约束
下载PDF
一种基于Seeds集和成对约束的主动半监督聚类算法 被引量:2
3
作者 陈志雨 王慧君 +1 位作者 胡明 刘钢 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第3期664-672,共9页
针对半监督聚类算法中监督信息使用不充分,监督信息中信息含有量低的问题,提出一种结合主动学习的半监督聚类算法.首先结合使用数据的类别标记和成对约束信息,指导Kmeans聚类过程,设计出一种基于Seeds集和成对约束的半监督聚类算法SC-Km... 针对半监督聚类算法中监督信息使用不充分,监督信息中信息含有量低的问题,提出一种结合主动学习的半监督聚类算法.首先结合使用数据的类别标记和成对约束信息,指导Kmeans聚类过程,设计出一种基于Seeds集和成对约束的半监督聚类算法SC-Kmeans;其次将主动学习算法引入到SC-Kmeans中,以尽量小的代价选取信息含有量更高的监督信息,提高SC-Kmeans算法的聚类精度;最后在UCI标准数据集上进行仿真实验.实验结果表明,该算法取得了较好的聚类效果,有效提高了聚类准确率. 展开更多
关键词 半监督聚类 Kmeans算法 成对约束 seeds集 主动学习
下载PDF
基于seeds集和频繁项集挖掘的半监督聚类算法 被引量:2
4
作者 赵倩 尚学群 王淼 《计算机工程与应用》 CSCD 北大核心 2010年第8期123-126,176,共5页
半监督聚类在无监督学习中通过对少量监督信息的有效利用提高聚类性能。提出一种基于seeds集的半监督聚类算法,它采用Apiori算法对初始seeds集和扩大规模后seeds集的数据进行频繁项集挖掘,使得数据中存在的噪音数据和误标记数据得到净... 半监督聚类在无监督学习中通过对少量监督信息的有效利用提高聚类性能。提出一种基于seeds集的半监督聚类算法,它采用Apiori算法对初始seeds集和扩大规模后seeds集的数据进行频繁项集挖掘,使得数据中存在的噪音数据和误标记数据得到净化、修正,以改善seeds集质量,提高聚类性能。该算法使用带权χ2测试这一数学模型作为分类规则度量指标,以对无标记数据进行类标签值预测。实验结果显示,所提出的结合了频繁项集挖掘和带权χ2测试的基于seeds集的半监督聚类算法不仅改善了seeds集质量,也提高了预测结果的精确度,优化了聚类性能。 展开更多
关键词 半监督聚类 频繁项挖掘 带权χ2测试 seeds集
下载PDF
基于Tri-Training和数据剪辑的半监督聚类算法 被引量:30
5
作者 邓超 郭茂祖 《软件学报》 EI CSCD 北大核心 2008年第3期663-673,共11页
提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术... 提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术对seeds集扩大过程中产生的误标记噪声数据进行修正、净化,以提高seeds集质量.实验结果表明,所提出的基于Tri-training和数据剪辑的DE-Tri-training半监督聚类新算法能够有效改善seeds集对聚类中心的初始化效果,提高聚类性能. 展开更多
关键词 半监督聚类 半监督分类 K-均值 seeds集 TRI-TRAINING Depuration数据剪辑
下载PDF
基于DBN和RF的跨被试情绪识别研究 被引量:2
6
作者 王发旺 陈睿 伏云发 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期617-626,共10页
目前情绪识别的分类方法很多,但情绪分类模型多具有被试依赖性,基于SEED数据集探索了跨被试情绪识别模型.首先将所有被试的脑电(Electroencephalogram,EEG)数据合并为一个被试,共提取675个trial三类情绪(正性(positive)、中性(neutral)... 目前情绪识别的分类方法很多,但情绪分类模型多具有被试依赖性,基于SEED数据集探索了跨被试情绪识别模型.首先将所有被试的脑电(Electroencephalogram,EEG)数据合并为一个被试,共提取675个trial三类情绪(正性(positive)、中性(neutral)、负性(negative)情绪)的短时傅里叶变换(Short-Time Fourier Transform,STFT)、离散小波变换(Discrete Wavelet Transformation,DWT)特征,并使用ReliefF特征选择算法对特征进行权重排序.其次,从排序好的特征中选择600个trial作为训练集,剩余的作为测试集;然后将K最近邻(K-Nearest Neighbor,KNN)、二次判别分析法(Quadratic Discriminant Analysis,QDA)、支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、深度置信(信念)网络(Deep Belief Network,DBN)五种分类算法作为分类器,对比研究选出最优的分类框架.结果表明,五种分类器的平均分类精度分别为:KNN 69.21%±3.4%,QDA 52.17%±9.41%,SVM 78.41%±3.8%,RF 83.49%±2.6%,DBN 81.73%±2.22%,可见RF的分类效果最好.分别计算每个分类模型对负性、中性、正性情绪的分类准确率,结果如下:不同分类器对正性情绪的识别效果都比较好;KNN,QDA,SVM对负性和中性情绪的分类效果较差,准确率不高;DBN和RF对负性和中性情绪的识别率较高,能有效地进行情绪识别.以上研究可望为跨被试的情绪识别模型提供参考. 展开更多
关键词 情绪识别 跨被试 深度置信网络 随机森林 seed数据
下载PDF
基于CNN时-空卷积优化的EM-EEG识别方法研究 被引量:2
7
作者 黄永庆 周强 《电子测量与仪器学报》 CSCD 北大核心 2022年第3期231-240,共10页
针对当前情绪脑电信号(emotion electroencephalogram,EM-EEG)识别研究中时间域信息的时间尺度难以把握和空间域信息易被忽视致使辨识率停滞不前,以及采集EM-EEG时通道过多导致信息冗余和信息处理成本增加等问题,提出了基于CNN的时-空... 针对当前情绪脑电信号(emotion electroencephalogram,EM-EEG)识别研究中时间域信息的时间尺度难以把握和空间域信息易被忽视致使辨识率停滞不前,以及采集EM-EEG时通道过多导致信息冗余和信息处理成本增加等问题,提出了基于CNN的时-空卷积优化融合网络进行EM-EEG识别研究。该融合网络由提取EM-EEG时域信息的长卷积(long convolution,L-Conv)CNN和提取EM-EEG空域信息的CNN并联组成,在CNN模型时-空优化中使用粒子群算法(particle swarm optimization,PSO)对时域CNN中的L-Conv尺度进行了优化,并使用短时功率谱(short time power spectrum,STPS)的相关分析方法进行空域CNN模型通道数目优化,深层且有效地提取了EEG中的时间域和空间域特征。结果表明,提出的时-空卷积优化融合CNN在SEED IV数据集上对平和、悲伤、恐惧、高兴4种情绪最终准确率可以达到90.13%,相比传统单一CNN的识别准确率提高了4.76%,并且通道数目由62路降低至33路,缩减了46.77%,证实了本方法的可行性。 展开更多
关键词 EM-EEG 时-空卷积优化 粒子群算法 STPS相关分析 seed IV数据
下载PDF
基于有记忆递归神经网络的脑电特征情感识别研究 被引量:4
8
作者 张悦 胡春燕 《电子科技》 2020年第11期67-72,共6页
为了提高脑电信号多分类的情感识别率,文中选用上海交通大学提供的SEED脑电信号数据集,对其进行分频带特征提取。将脑电数据的微分熵特征、微分不对称性特征和有理不对称性特征通过线性动力系统平滑特征后,与功率谱密度特征进行分类效... 为了提高脑电信号多分类的情感识别率,文中选用上海交通大学提供的SEED脑电信号数据集,对其进行分频带特征提取。将脑电数据的微分熵特征、微分不对称性特征和有理不对称性特征通过线性动力系统平滑特征后,与功率谱密度特征进行分类效果比较,再利用有记忆递归神经网络的方法进行分类,发现提取的微分熵特征经过分类的效果好。在对3种情感进行分类的过程中,采用长短时记忆神经网络分类相比于其他机器学习方法识别率有所提高,情感识别的平均准确率可达到95.0459%。 展开更多
关键词 脑电信号 seed数据 微分熵 微分不对称 有理不对称 线性动力系统 有记忆递归神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部