期刊文献+
共找到1,316篇文章
< 1 2 66 >
每页显示 20 50 100
Monitoring models for base flow effect and daily variation of dam seepage elements considering time lag effect 被引量:11
1
作者 Shao-wei Wang Ying-li Xu +1 位作者 Chong-shi Gu Teng-fei Bao 《Water Science and Engineering》 EI CAS CSCD 2018年第4期344-354,共11页
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an... Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution. 展开更多
关键词 Dam seepage monitoring model Time lag effect Support vector machine(SVM) Sensitivity analysis Base flow Daily variation Piezometric tube water level
下载PDF
Research Status and Development Direction of Gas-containing Coal Seepage Model 被引量:16
2
作者 程波 《矿业安全与环保》 北大核心 2017年第5期93-97,共5页
下载PDF
Seepage simulation of high concrete-faced rockfill dams based on generalized equivalent continuum model 被引量:6
3
作者 Shou-kai Chen Qi-dong He Ji-gang Cao 《Water Science and Engineering》 EI CAS CSCD 2018年第3期250-257,共8页
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m... This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs. 展开更多
关键词 Concrete-faced ROCKFILL dam(CFRD) GENERALIZED equivalent CONTINUUM model Node virtual flow method Fractured rock mass seepage field seepage coefficient
下载PDF
Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm 被引量:8
4
作者 Yan Xiang Shu-yan Fu +2 位作者 Kai Zhu Hui Yuan Zhi-yuan Fang 《Water Science and Engineering》 EI CAS CSCD 2017年第1期70-77,共8页
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,... Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly. 展开更多
关键词 Monitoring model Particle swarm optimization algorithm Earth rock dam Lagging effect TYPHOON seepage pressure Mutation factor Piezometric level
下载PDF
Coupling model for assessing anti-seepage behavior of curtain under dam foundation 被引量:1
5
作者 彭鹏 单治钢 董育烦 《Journal of Central South University》 SCIE EI CAS 2012年第7期2016-2021,共6页
The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydrau... The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain. 展开更多
关键词 CURTAIN dam foundation seepage calcium ion leaching coupling model
下载PDF
Applying seepage modeling to improve sediment yield predictions in contour ridge systems
6
作者 LIU Qianjin MA Liang ZHANG Hanyu 《Journal of Arid Land》 SCIE CSCD 2020年第4期676-689,共14页
Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To... Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To address the importance of seepage in soil erosion modeling, a total of 23 treatments with 3 factors, row grade, field slope and ridge height, in 5 gradients were arranged in an orthogonal rotatable central composite design. The second-order polynomial regression model for predicting the sediment yield was improved by using the measured or predicted seepage discharge as an input factor, which increased the coefficient of determination(R^2) from 0.743 to 0.915 or 0.893. The improved regression models combined with the measured seepage discharge had a lower P(0.007) compared to those combined with the predicted seepage discharge(P=0.016). With the measured seepage discharge incorporated, some significant(P<0.050) effects and interactions of influential factors on sediment yield were detected, including the row grade and its interactions with the field slope, ridge height and seepage discharge, the quadratic terms of the field slope and its interactions with the row grade and seepage discharge. In the regression model with the predicted seepage discharge as an influencing factor, only the interaction between row grade and seepage discharge significantly affected the sediment yield. The regression model incorporated with predicted seepage discharge may be expressed simply and can be used effectively when measured seepage discharge data are not available. 展开更多
关键词 soil erosion model contour ridge seepage geometry factors rainfall simulation
下载PDF
Research on the temperature field of a partially freezing sand barrier with groundwater seepage 被引量:7
7
作者 Li Yan Lao Zhi Qiang Ji +1 位作者 Liang Liang Huang Shang Jing Li 《Research in Cold and Arid Regions》 CSCD 2017年第3期280-288,共9页
To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model t... To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model test developed in-house equipment.By means of three group freezing tests with different seepage velocities,we discovered the phenomenon of the asymmetry of the temperature field under the influence of seepage.The temperature upstream was obviously higher than that downstream.The temperature gradient upstream was also steeper than that downstream.With a higher seepage velocity,the asymmetry of the temperature field is more pronounced.The asymmetry for the interface temperature profile is more strongly manifest than for the main surface temperature profile.The cryogenic barrier section is somewhat"heartshaped".With the increasing velocity of the seepage flow,the cooling rate of the soil decreases.It takes much time to reach the equilibrium state of the soil mass.In our study,seepage flow velocities of 0 m/d,7.5 m/d,and 15 m/d showed the soilcooling rate of 4.35°C/h,4.96°C/h,and 1.72°C/h,respectively. 展开更多
关键词 FREEZING temperature FIELD seepage FREEZING SOIL BARRIER model test
下载PDF
Test Research of Seepage Monitoring Based on Distributed Optical Fiber 被引量:1
8
作者 Zhao Xinming Gao Yifei +4 位作者 Wang Qianwen Gao Junqi Zhou Yong Wu Gang Yao Jian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期300-308,共9页
In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepa... In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepage velocities are measured through applying AC voltage on the optical fiber.The analyzing results show that the optical fiber heating temperature and seepage velocity are related in quadratic function.The quantitative relations of optical fiber temperature and seepage velocity under different soil types and compaction degree are fitted.Analysis on how the compaction degree influences the relation of optical fiber temperature and seepage velocity shows that with the increase of compaction degree,optical fiber heating temperature will gradually decline.The influence of soil type on fiber heating temperature is very complex.In practice,according to the characteristics of the soil,determining quantitative relationship and implementing quantitative monitoring of the seepage velocity are needed. 展开更多
关键词 THEORETICAL model seepage VELOCITY QUANTITATIVE monitoring COMPACTION DEGREE soil type
下载PDF
Groundwater flow through fractured rocks and seepage control in geotechnical engineering: Theories and practices 被引量:3
9
作者 Chuang-Bing Zhou Yi-Feng Chen +1 位作者 Ran Hu Zhibing Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期1-36,共36页
Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applicatio... Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects. 展开更多
关键词 Fractured rock Groundwater flow Flow visualization Hydraulic property Hydromechanical coupling Groundwater flow modeling seepage control
下载PDF
An Approach for Quantifying the Influence of Seepage Dissolution on Seismic Performance of Concrete Dams 被引量:2
10
作者 Shaowei Wang Cong Xu +3 位作者 Hao Gu Pinghua Zhu Hui Liu Bo Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期97-117,共21页
Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An... Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams.To connect laboratory test with numerical simulation,dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index,a deterioration model is established to predict the mechanical property of leached concrete in the first step.A coupled seepage-calcium dissolutionmigrationmodel containing two calculation modes is proposed to simulate the spatially non-uniformdeterioration of concrete dams.Based on the simulated state of a roller compacted concrete dam subjected to 100 years of seepage dissolution,seismic responses of the damare subsequently analyzed.During which the nonlinear cracking of concrete,the radiation damping of the far-field foundation is considered.Research results show that seepage dissolution will seriously weaken the seismic safety of concrete dams because of the dissolution-induced decrease of effective thickness of the dam body.The upstream surface,dam toe and gallery wall suffer from a large degree of dissolution,whereas it is minimal and basically the same inside the dam body,at a degree of 0.19%within 100 years.The horizontal displacements of dam crest under the design static load and fortification against earthquake increase by 6.9%and 21.9%,respectively,and the dissolution-induced seismic cracking leads to the failure of dam anti-seepage system.This study can provide engineers with a reference basis for reinforcement decision of old concrete dams. 展开更多
关键词 Concrete dams seepage dissolution deterioration prediction model seismic performance failure mode
下载PDF
Seepage Mechanism and Transient Pressure Analysis of Shale Gas 被引量:1
11
作者 Xiao Guo Weifeng Wang 《Applied Mathematics》 2013年第1期197-203,共7页
The current research of nonlinear seepage theory of shale-gas reservoir is still in its infancy. According to the characteristics of shale gas in adsorption-desorption, diffusion, slippage and seepage during accumulat... The current research of nonlinear seepage theory of shale-gas reservoir is still in its infancy. According to the characteristics of shale gas in adsorption-desorption, diffusion, slippage and seepage during accumulation, migration and production, a mathematical model of unstable seepage in dual-porosity sealed shale-gas reservoir was developed while considering Knudsen diffusion, slip-flow effect and Langmuir desorption effect. By solving the model utilizing the Stehfest numerical inversion and computer programming in Laplace space, several typical curves of bottomhole pressure were obtained. In this paper, we discussed the effects of several parameters on the pressure dynamics, i.e. storativity ratio, Langmuir volume, Langmuir pressure, adsorption-desorption, tangential momentum accommodation coefficient, flow coefficient, boundary. The results show that the desorbed gas extends the time for fluid to flow from matrix system to fracture system;the changes of Langmuir volume and Langmuir pressure associated with desorption and adsorption effect are the internal causes of the storativity ratio change;when the tangential momentum accommodation coefficient decreases, the time for pressure wave to spread to the border reduces;interporosity flow coefficient determines the occurrence time of the transition stage;boundary range restricts the time for pressure wave to spread to the border. 展开更多
关键词 SHALE Gas seepage MECHANISM Mathematical model Knudsen Diffusion SLIPPAGE LANGMUIR DESORPTION
下载PDF
ATheoretical and Applied Study of Seepage under Coupling Between Seepage Field and Stress Field
12
作者 黄涛 杨立中 寇川 《Journal of Modern Transportation》 1999年第2期181-189,共9页
In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this prob... In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this problem, the article has given a mathematical model on coupling between seepage field and stress field, and carried out numerical simulation with FEM (finite element method). Finally, the numerical simulation of coupling between fractured groundwater seepage field and fractured water bearing media stress field on the longest tunnel in China shows that this method is successful. At the same time, the prediction of water gushing yield in this tunnels construction is given. 展开更多
关键词 seepage STRESS COUPLING mathematical model
下载PDF
DYNAMICS OF GAS SEEPAGE AND ITS APPLICATIONS
13
作者 孙培德 鲜学福 张代均 《Journal of Coal Science & Engineering(China)》 1996年第1期67-71,共5页
Dynamics of gas seepage as a borderline subject of geosciences mainly studies the flow and distribution of gas in coalseams or gas-bearing strata. In this paper new dynamic models for coal gas flow are developed.Using... Dynamics of gas seepage as a borderline subject of geosciences mainly studies the flow and distribution of gas in coalseams or gas-bearing strata. In this paper new dynamic models for coal gas flow are developed.Using in-situ measured parameters of coal gas dynamics, the new models are tested with three existing dynamic models in the world. The results show that the new models approach the reality more cIose than the other three models.In addition, the other relations or indices helped to evaluate gas flow in coalseam are proposed. 展开更多
关键词 gas seepage mathematical models numerical simulations gas drainage
下载PDF
A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks
14
作者 Huiyan Zhao Xuezhong Chen +3 位作者 Zhijian Hu Man Chen Bo Xiong Jianying Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1313-1330,共18页
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory... Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production. 展开更多
关键词 Marine-continental transitional reservoir multi-layered reservoir seepage mechanisms apparent permeability hydraulic horizontal well productivity model
下载PDF
Chloride Ion Transmission Model under the Drying-wetting Cycles and Its Solution 被引量:2
15
作者 黄滢 卫军 +1 位作者 DONG Rongzhen ZENG Hua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期445-450,共6页
The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. Th... The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy's Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion. 展开更多
关键词 under the drying-wetting cycles the chloride ion transmission model the group explicit scheme seepage velocity
下载PDF
Model test study on the formation and development of underground erosion ground fissures in the Kenya Rift Valley 被引量:2
16
作者 LIU Yang PENG Jian-bing +3 位作者 JIANG Fu-qiang LU Quan-zhong ZHU Feng-ji Xu Qiang 《Journal of Mountain Science》 SCIE CSCD 2022年第4期1037-1050,共14页
The Kenya Rift Valley is relatively prone to underground erosion ground fissures and associated disasters,which gravely hinder local engineering construction and economic development.In this research,we performed fiel... The Kenya Rift Valley is relatively prone to underground erosion ground fissures and associated disasters,which gravely hinder local engineering construction and economic development.In this research,we performed field and experimental studies on ground fissures in the Kenya Rift Valley area,and determined the structural characteristics of underground erosion fissures.Based on a geological survey of the area,we generalized a geological model for typical ground fissures and reproduced the intermediate process of ground fissure propagation using a large-scale physical model test.Further,the development process of underground erosion fissures were categorized into four stages:uniform infiltration,preferential infiltration,cavity expansion,and collapse formation stages.During the development of underground erosion fissures,water content was distributed symmetrically along the fissures,and these fissures acted as the primary infiltration paths of water.When the ground collapsed,the increase in negative pore water pressure was greater,whereas the increase in positive pore water pressure was less in the shallow soil;moreover,in the deep soil,the increase in positive pore water pressure was greater than that of negative pore water pressure.Additionally,the earth pressure increment initially increased and then decreased with the development of erosion.During underground erosion collapse,the water content and pore water pressure appeared to increase and decrease rapidly.These results can be employed to predict the occurrence of underground erosion ground fissures and the resulting soil collapse. 展开更多
关键词 Kenya Rift Valley model test seepage failure Underground erosion ground fissure
下载PDF
A 3D basin modeling study of the factors controlling gas hydrate accumulation in the Shenhu Area of the South China Sea 被引量:1
17
作者 Zhi-yuan Xie Jian-gong Wei +2 位作者 Jin-yun Zheng Zhen Sun Kun Zhang 《China Geology》 2022年第2期218-233,共16页
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms... Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential. 展开更多
关键词 3D basin modeling Gas hydrates Fault reactivation OVERPRESSURE Gas seepage Heat flow NGHs exploration trial engineering Oil and gas exploration engineering Shenhu Area South China Sea
下载PDF
Establishment of Unstable Flow Model and Well Testing Analysis for Viscoelastic Polymer Flooding
18
作者 Zheng Lv Meinan Wang 《World Journal of Engineering and Technology》 2023年第2期273-280,共8页
At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments... At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments have shown that polymer solutions have viscoelasticity, and disregarding the elasticity will cause certain errors in the analysis of polymer solution seepage law. Based on the percolation theory, this paper describes the polymer flooding mechanism from the two aspects of viscous effect and elastic effect, the mathematical model of oil water two-phase three components unsteady flow in viscoelastic polymer flooding was established, and solved by finite difference method, and the well-test curve was drawn to analyze the rule of well test curve in polymer flooding. The results show that, the degree of upward warping in the radial flow section of the pressure recovery curve when considering polymer elasticity is greater than the curve which not considering polymer elasticity. The relaxation time, power-law index, polymer injection concentration mainly affect the radial flow stage of the well testing curve. The relaxation time, power-law index, polymer injection concentration and other polymer flooding parameters mainly affect the radial flow stage of the well testing curve. The larger the polymer flooding parameters, the greater the degree of upwarping of the radial flow derivative curve. This model has important reference significance for well-testing research in polymer flooding oilfields. 展开更多
关键词 Polymer Flooding VISCOELASTICITY Well Testing Mathematical model seepage Law
下载PDF
基于RUN-XGBoost算法的土石坝渗流预测模型 被引量:1
19
作者 马春辉 侯媛媛 +2 位作者 杨杰 袁帅 徐笑颜 《水利水电科技进展》 CSCD 北大核心 2024年第2期72-78,共7页
针对传统土石坝渗流预测模型存在局部最优、抗干扰性差和预测精度低等问题,通过RUN算法优化XGBoost算法得到RUN-XGBoost算法,构建了RUN-XGBoost模型以获得更优的土石坝渗流预测结果。该模型在种群初始化时采用RUN算法对XGBoost算法的3... 针对传统土石坝渗流预测模型存在局部最优、抗干扰性差和预测精度低等问题,通过RUN算法优化XGBoost算法得到RUN-XGBoost算法,构建了RUN-XGBoost模型以获得更优的土石坝渗流预测结果。该模型在种群初始化时采用RUN算法对XGBoost算法的3个主要参数进行改进,使预测结果有较高的有效性;通过自动寻找最优参数增进算法的整体收敛速度和预测精度,同时引入随机解,使算法能够排除局部最小值并继续搜索,从而获得全局最优结果。工程实例验证结果表明,RUN-XGBoost模型具有简洁、高效、预测精度高、鲁棒性强等优点。 展开更多
关键词 土石坝 渗流监测 RUN-XGBoost算法 预测模型
下载PDF
基于Pasternak海床模型的椭圆余弦波浪荷载作用下埋置管线动力响应解析解 被引量:1
20
作者 张治国 叶铜 +3 位作者 张成平 PAN Yu-tao 沈安鑫 吴钟腾 《工程力学》 EI CSCD 北大核心 2024年第1期76-89,共14页
通过两阶段分析方法,针对椭圆余弦波作用下埋置管线的动力响应进行了探究。基于椭圆余弦波理论,采用Biot固结方程推导了非线性波浪作用下浅水区埋置管线所受的周期波浪压力;将管线考虑为动力Pasternak海床模型上的Euler-Bernoulli梁,将... 通过两阶段分析方法,针对椭圆余弦波作用下埋置管线的动力响应进行了探究。基于椭圆余弦波理论,采用Biot固结方程推导了非线性波浪作用下浅水区埋置管线所受的周期波浪压力;将管线考虑为动力Pasternak海床模型上的Euler-Bernoulli梁,将波浪动荷载施加到管线上获得无限长管线的动力响应偏微分控制方程;利用Fourier变换和Laplace变换并借助卷积定理得到管线挠度、速度、加速度、转角、弯矩和剪力的动力响应解。通过与三维有限元数值算例及既有试验结果对比验证了解析解的正确性与适用性。对椭圆余弦波作用下埋置管线的动力响应特性进行了敏感参数分析,结果表明:波浪高度H显著影响了波面形状与海床内波浪力大小,不同浪高下管线转角、弯矩和剪力的变化更明显,而挠度、速度和加速度响应敏感性则较低。 展开更多
关键词 非线性波浪 埋置管线 渗流力 管土作用 动力Pasternak海床模型
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部