Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classificat...Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.展开更多
The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not av...The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not available for identification.Additionally,the response is nonlinear due to the yielding of the lead-rubber bearings.Two new approaches are presented in this paper to solve the aforementioned problems.First,a reduced order observer is used to estimate the unmeasured states.Second,a least squares technique with time segments is developed to identify the piece-wise linear system properties.The observer is used to estimate the initial conditions needed for the time segmented identification.A series of equivalent linear system parameters are identified in different time segments.It is shown that the change in system parameters,such as frequencies and damping ratios,due to nonlinear behavior of the lead-rubber bearings,are reliably estimated using the presented technique.It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.展开更多
In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different ...In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested.展开更多
Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divid...Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.展开更多
基金financially supported by grant from National Natural Science Foundation of China(No.31300533)
文摘Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.
文摘The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not available for identification.Additionally,the response is nonlinear due to the yielding of the lead-rubber bearings.Two new approaches are presented in this paper to solve the aforementioned problems.First,a reduced order observer is used to estimate the unmeasured states.Second,a least squares technique with time segments is developed to identify the piece-wise linear system properties.The observer is used to estimate the initial conditions needed for the time segmented identification.A series of equivalent linear system parameters are identified in different time segments.It is shown that the change in system parameters,such as frequencies and damping ratios,due to nonlinear behavior of the lead-rubber bearings,are reliably estimated using the presented technique.It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.
文摘In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested.
基金This work was supported by the National Natural Science Foundation of China[grant number 41101410]the Comprehensive Transportation Applications of High-resolution Remote Sensing program[grant number 07-Y30B10-9001-14/16]+1 种基金the Key Laboratory of Surveying Mapping and Geoinformation in Geographical Condition Monitoring[grant number 2014NGCM]the Science and Technology Plan of Sichuan Bureau of Surveying,Mapping and Geoinformation,China[grant number J2014ZC02].
文摘Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.