Objective To present a novel modified level set algorithm for medical image segmentation. Methods The algorithm is developed by substituting the speed function of level set algorithm with the region and gradient infor...Objective To present a novel modified level set algorithm for medical image segmentation. Methods The algorithm is developed by substituting the speed function of level set algorithm with the region and gradient information of the image instead of the conventional gradient information. This new algorithm has been tested by a series of different modality medical images. Results We present various examples and also evaluate and compare the performance of our method with the classical level set method on weak boundaries and noisy images. Conclusion Experimental results show the proposed algorithm is effective and robust.展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
This paper presents an efficient liver-segmentation system developed by combining three ideas under the operations of a level-set method and consequent processes. First, an effective initial process creates mask and s...This paper presents an efficient liver-segmentation system developed by combining three ideas under the operations of a level-set method and consequent processes. First, an effective initial process creates mask and seed regions. The mask regions assist in prevention of leakage regions due to an overlap of gray-intensities between liver and another soft-tissue around ribs and verte-brae. The seed regions are allocated inside the liver to measure statistical values of its gray-intensities. Second, we introduce liver-corrective images to represent statistical regions of the liver and preserve edge information. These images help a geodesic active contour (GAC) to move without obstruction from high level of image noises. Lastly, the computation time in a level-set based on reaction-diffusion evolution and the GAC method is reduced by using a concept of multi-resolution. We applied the proposed system to 40 sets of 3D CT-liver data, which were acquired from four patients (10 different sets per patient) by a 4D-CT imaging system. The segmentation results showed 86.38% ± 4.26% (DSC: 91.38% ± 2.99%) of similarities to outlines of manual delineation provided by a radiologist. Meanwhile, the results of liver segmentation only using edge images presented 79.17% ± 5.15% or statistical regions showed 74.04% ± 9.77% of similarities.展开更多
A novel flotation froth image segmentation based on threshold level set method is put forward in view of the problem of over-segmentation and under-segmentation which occurs when the existing method segmented the flot...A novel flotation froth image segmentation based on threshold level set method is put forward in view of the problem of over-segmentation and under-segmentation which occurs when the existing method segmented the flotation froth images. Firstly, the proposed method adopts histogram equalization to improve the contrast of the image, and then chooses the upper threshold and lower threshold from grey value of histogram of the image equalization, and complete image segmentation using the level set method. In this paper, the model which integrates edge with region level set model is utilized, and the speed energy term is introduced to segment the target. Experimental results show that the proposed method has better segmentation results and higher segmentation efficiency on the images with under-segmentation and incorrect segmentation, and it is meaningful for ore dressing industrial.展开更多
文摘Objective To present a novel modified level set algorithm for medical image segmentation. Methods The algorithm is developed by substituting the speed function of level set algorithm with the region and gradient information of the image instead of the conventional gradient information. This new algorithm has been tested by a series of different modality medical images. Results We present various examples and also evaluate and compare the performance of our method with the classical level set method on weak boundaries and noisy images. Conclusion Experimental results show the proposed algorithm is effective and robust.
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
文摘This paper presents an efficient liver-segmentation system developed by combining three ideas under the operations of a level-set method and consequent processes. First, an effective initial process creates mask and seed regions. The mask regions assist in prevention of leakage regions due to an overlap of gray-intensities between liver and another soft-tissue around ribs and verte-brae. The seed regions are allocated inside the liver to measure statistical values of its gray-intensities. Second, we introduce liver-corrective images to represent statistical regions of the liver and preserve edge information. These images help a geodesic active contour (GAC) to move without obstruction from high level of image noises. Lastly, the computation time in a level-set based on reaction-diffusion evolution and the GAC method is reduced by using a concept of multi-resolution. We applied the proposed system to 40 sets of 3D CT-liver data, which were acquired from four patients (10 different sets per patient) by a 4D-CT imaging system. The segmentation results showed 86.38% ± 4.26% (DSC: 91.38% ± 2.99%) of similarities to outlines of manual delineation provided by a radiologist. Meanwhile, the results of liver segmentation only using edge images presented 79.17% ± 5.15% or statistical regions showed 74.04% ± 9.77% of similarities.
文摘A novel flotation froth image segmentation based on threshold level set method is put forward in view of the problem of over-segmentation and under-segmentation which occurs when the existing method segmented the flotation froth images. Firstly, the proposed method adopts histogram equalization to improve the contrast of the image, and then chooses the upper threshold and lower threshold from grey value of histogram of the image equalization, and complete image segmentation using the level set method. In this paper, the model which integrates edge with region level set model is utilized, and the speed energy term is introduced to segment the target. Experimental results show that the proposed method has better segmentation results and higher segmentation efficiency on the images with under-segmentation and incorrect segmentation, and it is meaningful for ore dressing industrial.