Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR...Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR).A new approach to automatic OAR seg-mentation in the chest cavity in Computed Tomography(CT)images is presented.The proposed approach is based on the modified U‐Net architecture with the ResNet‐34 encoder,which is the baseline adopted in this work.The new two‐branch CS‐SA U‐Net architecture is proposed,which consists of two parallel U‐Net models in which self‐attention blocks with cosine similarity as query‐key similarity function(CS‐SA)blocks are inserted between the encoder and decoder,which enabled the use of con-sistency regularisation.The proposed solution demonstrates state‐of‐the‐art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient(oesophagus-0.8714,heart-0.9516,trachea-0.9286,aorta-0.9510)and Hausdorff distance(oesophagus-0.2541,heart-0.1514,trachea-0.1722,aorta-0.1114)and significantly outperforms the baseline.The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.展开更多
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image...The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.展开更多
Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception...Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception.Conventional learning-based visual semantic segmentation approaches count heavily on largescale training data with dense annotations and consistently fail to estimate accurate semantic labels for unseen categories.This obstruction spurs a craze for studying visual semantic segmentation with the assistance of few/zero-shot learning.The emergence and rapid progress of few/zero-shot visual semantic segmentation make it possible to learn unseen categories from a few labeled or even zero-labeled samples,which advances the extension to practical applications.Therefore,this paper focuses on the recently published few/zero-shot visual semantic segmentation methods varying from 2D to 3D space and explores the commonalities and discrepancies of technical settlements under different segmentation circumstances.Specifically,the preliminaries on few/zeroshot visual semantic segmentation,including the problem definitions,typical datasets,and technical remedies,are briefly reviewed and discussed.Moreover,three typical instantiations are involved to uncover the interactions of few/zero-shot learning with visual semantic segmentation,including image semantic segmentation,video object segmentation,and 3D segmentation.Finally,the future challenges of few/zero-shot visual semantic segmentation are discussed.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Lung cancer is a malady of the lungs that gravely jeopardizes human health.Therefore,early detection and treatment are paramount for the preservation of human life.Lung computed tomography(CT)image sequences can expli...Lung cancer is a malady of the lungs that gravely jeopardizes human health.Therefore,early detection and treatment are paramount for the preservation of human life.Lung computed tomography(CT)image sequences can explicitly delineate the pathological condition of the lungs.To meet the imperative for accurate diagnosis by physicians,expeditious segmentation of the region harboring lung cancer is of utmost significance.We utilize computer-aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential manner,erect an interpretable model,and attain segmentation of lung cancer.The specific advancements can be encapsulated as follows:1)Concentration on the lung parenchyma region:Based on 16-bit CT image capturing and the luminance characteristics of lung cancer,we proffer an intercept histogram algorithm.2)Focus on the specific locus of lung malignancy:Utilizing the spatial interrelation of lung cancer,we propose a memory-based Unet architecture and incorporate skip connections.3)Data Imbalance:In accordance with the prevalent situation of an overabundance of negative samples and a paucity of positive samples,we scrutinize the existing loss function and suggest a mixed loss function.Experimental results with pre-existing publicly available datasets and assembled datasets demonstrate that the segmentation efficacy,measured as Area Overlap Measure(AOM)is superior to 0.81,which markedly ameliorates in comparison with conventional algorithms,thereby facilitating physicians in diagnosis.展开更多
Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and healthcare systems worldwide.Various Computer-Aided Diagnosis(CAD)tools,based on breast thermograms,ha...Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and healthcare systems worldwide.Various Computer-Aided Diagnosis(CAD)tools,based on breast thermograms,have been developed for early detection of this disease.However,accurately segmenting the Region of Interest(ROI)fromthermograms remains challenging.This paper presents an approach that leverages image acquisition protocol parameters to identify the lateral breast region and estimate its bottomboundary using a second-degree polynomial.The proposed method demonstrated high efficacy,achieving an impressive Jaccard coefficient of 86%and a Dice index of 92%when evaluated against manually created ground truths.Textural features were extracted from each view’s ROI,with significant features selected via Mutual Information for training Multi-Layer Perceptron(MLP)and K-Nearest Neighbors(KNN)classifiers.Our findings revealed that the MLP classifier outperformed the KNN,achieving an accuracy of 86%,a specificity of 100%,and an Area Under the Curve(AUC)of 0.85.The consistency of the method across both sides of the breast suggests its viability as an auto-segmentation tool.Furthermore,the classification results suggests that lateral views of breast thermograms harbor valuable features that can significantly aid in the early detection of breast cancer.展开更多
Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been dev...Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.展开更多
During flotation,the features of the froth image are highly correlated with the concentrate grade and the corresponding working conditions.The static features such as color and size of the bubbles and the dynamic feat...During flotation,the features of the froth image are highly correlated with the concentrate grade and the corresponding working conditions.The static features such as color and size of the bubbles and the dynamic features such as velocity have obvious differences between different working conditions.The extraction of these features is typically relied on the outcomes of image segmentation at the froth edge,making the segmentation of froth image the basis for studying its visual information.Meanwhile,the absence of scientifically reliable training data with label and the necessity to manually construct dataset and label make the study difficult in the mineral flotation.To solve this problem,this paper constructs a tungsten concentrate froth image dataset,and proposes a data augmentation network based on Conditional Generative Adversarial Nets(cGAN)and a U-Net++-based edge segmentation network.The performance of this algorithm is also evaluated and contrasted with other algorithms in this paper.On the results of semantic segmentation,a phase-correlationbased velocity extraction method is finally suggested.展开更多
With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t...With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.展开更多
Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly...Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy.展开更多
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go...This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.展开更多
Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthr...Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.展开更多
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r...The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.展开更多
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ...Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.展开更多
High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the d...High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks.展开更多
This paper proposes a new network structure,namely the ProNet network.Retinal medical image segmentation can help clinical diagnosis of related eye diseases and is essential for subsequent rational treatment.The basel...This paper proposes a new network structure,namely the ProNet network.Retinal medical image segmentation can help clinical diagnosis of related eye diseases and is essential for subsequent rational treatment.The baseline model of the ProNet network is UperNet(Unified perceptual parsing Network),and the backbone network is ConvNext(Convolutional Network).A network structure based on depth-separable convolution and 1×1 convolution is used,which has good performance and robustness.We further optimise ProNet mainly in two aspects.One is data enhancement using increased noise and slight angle rotation,which can significantly increase the diversity of data and help the model better learn the patterns and features of the data and improve the model’s performance.Meanwhile,it can effectively expand the training data set,reduce the influence of noise and abnormal data in the data set on the model,and improve the accuracy and reliability of the model.Another is the loss function aspect,and we finally use the focal loss function.The focal loss function is well suited for complex tasks such as object detection.The function will penalise the loss carried by samples that the model misclassifies,thus enabling better training of the model to avoid these errors while solving the category imbalance problem as a way to improve image segmentation density and segmentation accuracy.From the experimental results,the evaluation metrics mIoU(mean Intersection over Union)enhanced by 4.47%,and mDice enhanced by 2.92% compared to the baseline network.Better generalization effects and more accurate image segmentation are achieved.展开更多
The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are ...The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.展开更多
Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to fac...Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets.展开更多
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans...Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.展开更多
Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overa...Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively.展开更多
基金the PID2022‐137451OB‐I00 and PID2022‐137629OA‐I00 projects funded by the MICIU/AEIAEI/10.13039/501100011033 and by ERDF/EU.
文摘Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR).A new approach to automatic OAR seg-mentation in the chest cavity in Computed Tomography(CT)images is presented.The proposed approach is based on the modified U‐Net architecture with the ResNet‐34 encoder,which is the baseline adopted in this work.The new two‐branch CS‐SA U‐Net architecture is proposed,which consists of two parallel U‐Net models in which self‐attention blocks with cosine similarity as query‐key similarity function(CS‐SA)blocks are inserted between the encoder and decoder,which enabled the use of con-sistency regularisation.The proposed solution demonstrates state‐of‐the‐art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient(oesophagus-0.8714,heart-0.9516,trachea-0.9286,aorta-0.9510)and Hausdorff distance(oesophagus-0.2541,heart-0.1514,trachea-0.1722,aorta-0.1114)and significantly outperforms the baseline.The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.
基金the Researchers Supporting Project(RSP2023R395),King Saud University,Riyadh,Saudi Arabia.
文摘The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.
基金supported by National Key Research and Development Program of China(2021YFB1714300)the National Natural Science Foundation of China(62233005)+2 种基金in part by the CNPC Innovation Fund(2021D002-0902)Fundamental Research Funds for the Central Universities and Shanghai AI Labsponsored by Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development。
文摘Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception.Conventional learning-based visual semantic segmentation approaches count heavily on largescale training data with dense annotations and consistently fail to estimate accurate semantic labels for unseen categories.This obstruction spurs a craze for studying visual semantic segmentation with the assistance of few/zero-shot learning.The emergence and rapid progress of few/zero-shot visual semantic segmentation make it possible to learn unseen categories from a few labeled or even zero-labeled samples,which advances the extension to practical applications.Therefore,this paper focuses on the recently published few/zero-shot visual semantic segmentation methods varying from 2D to 3D space and explores the commonalities and discrepancies of technical settlements under different segmentation circumstances.Specifically,the preliminaries on few/zeroshot visual semantic segmentation,including the problem definitions,typical datasets,and technical remedies,are briefly reviewed and discussed.Moreover,three typical instantiations are involved to uncover the interactions of few/zero-shot learning with visual semantic segmentation,including image semantic segmentation,video object segmentation,and 3D segmentation.Finally,the future challenges of few/zero-shot visual semantic segmentation are discussed.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金This work is supported by Light of West China(No.XAB2022YN10).
文摘Lung cancer is a malady of the lungs that gravely jeopardizes human health.Therefore,early detection and treatment are paramount for the preservation of human life.Lung computed tomography(CT)image sequences can explicitly delineate the pathological condition of the lungs.To meet the imperative for accurate diagnosis by physicians,expeditious segmentation of the region harboring lung cancer is of utmost significance.We utilize computer-aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential manner,erect an interpretable model,and attain segmentation of lung cancer.The specific advancements can be encapsulated as follows:1)Concentration on the lung parenchyma region:Based on 16-bit CT image capturing and the luminance characteristics of lung cancer,we proffer an intercept histogram algorithm.2)Focus on the specific locus of lung malignancy:Utilizing the spatial interrelation of lung cancer,we propose a memory-based Unet architecture and incorporate skip connections.3)Data Imbalance:In accordance with the prevalent situation of an overabundance of negative samples and a paucity of positive samples,we scrutinize the existing loss function and suggest a mixed loss function.Experimental results with pre-existing publicly available datasets and assembled datasets demonstrate that the segmentation efficacy,measured as Area Overlap Measure(AOM)is superior to 0.81,which markedly ameliorates in comparison with conventional algorithms,thereby facilitating physicians in diagnosis.
基金supported by the research grant(SEED-CCIS-2024-166),Prince Sultan University,Saudi Arabia。
文摘Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and healthcare systems worldwide.Various Computer-Aided Diagnosis(CAD)tools,based on breast thermograms,have been developed for early detection of this disease.However,accurately segmenting the Region of Interest(ROI)fromthermograms remains challenging.This paper presents an approach that leverages image acquisition protocol parameters to identify the lateral breast region and estimate its bottomboundary using a second-degree polynomial.The proposed method demonstrated high efficacy,achieving an impressive Jaccard coefficient of 86%and a Dice index of 92%when evaluated against manually created ground truths.Textural features were extracted from each view’s ROI,with significant features selected via Mutual Information for training Multi-Layer Perceptron(MLP)and K-Nearest Neighbors(KNN)classifiers.Our findings revealed that the MLP classifier outperformed the KNN,achieving an accuracy of 86%,a specificity of 100%,and an Area Under the Curve(AUC)of 0.85.The consistency of the method across both sides of the breast suggests its viability as an auto-segmentation tool.Furthermore,the classification results suggests that lateral views of breast thermograms harbor valuable features that can significantly aid in the early detection of breast cancer.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23044).
文摘Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.
基金This work was financially supported by the National Natural Science Foundation of China(No.61973320)the Joint Fund of Liaoning Province State Key Laboratory of Robotics,China(No.2021KF2218)+1 种基金the Youth Program of the National Natural Science Foundation of China(No.61903138)the Key Research Innovation Project of Hunan Province,China(No.2022GK2059).
文摘During flotation,the features of the froth image are highly correlated with the concentrate grade and the corresponding working conditions.The static features such as color and size of the bubbles and the dynamic features such as velocity have obvious differences between different working conditions.The extraction of these features is typically relied on the outcomes of image segmentation at the froth edge,making the segmentation of froth image the basis for studying its visual information.Meanwhile,the absence of scientifically reliable training data with label and the necessity to manually construct dataset and label make the study difficult in the mineral flotation.To solve this problem,this paper constructs a tungsten concentrate froth image dataset,and proposes a data augmentation network based on Conditional Generative Adversarial Nets(cGAN)and a U-Net++-based edge segmentation network.The performance of this algorithm is also evaluated and contrasted with other algorithms in this paper.On the results of semantic segmentation,a phase-correlationbased velocity extraction method is finally suggested.
基金supported in part by collaborative research with Toyota Motor Corporation,in part by ROIS NII Open Collaborative Research under Grant 21S0601,in part by JSPS KAKENHI under Grants 20H00592,21H03424.
文摘With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.
基金This work is supported by the Natural Science Foundation of China(No.82372035)National Transportation Preparedness Projects(No.ZYZZYJ).Light of West China(No.XAB2022YN10)The China Postdoctoral Science Foundation(No.2023M740760).
文摘Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy.
基金The results and knowledge included herein have been obtained owing to support from the following institutional grant.Internal grant agency of the Faculty of Economics and Management,Czech University of Life Sciences Prague,Grant No.2023A0004-“Text Segmentation Methods of Historical Alphabets in OCR Development”.https://iga.pef.czu.cz/.Funds were granted to T.Novák,A.Hamplová,O.Svojše,and A.Veselýfrom the author team.
文摘This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.
文摘Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.
基金funded by Anhui Provincial Natural Science Foundation(No.2208085ME128)the Anhui University-Level Special Project of Anhui University of Science and Technology(No.XCZX2021-01)+1 种基金the Research and the Development Fund of the Institute of Environmental Friendly Materials and Occupational Health,Anhui University of Science and Technology(No.ALW2022YF06)Anhui Province New Era Education Quality Project(Graduate Education)(No.2022xscx073).
文摘The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.
基金supported by the MSIT(Ministry of Science and ICT)Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6).
文摘Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.
基金the National Natural Science Foundation of China(Grant Number 62066013)Hainan Provincial Natural Science Foundation of China(Grant Numbers 622RC674 and 2019RC182).
文摘High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks.
文摘This paper proposes a new network structure,namely the ProNet network.Retinal medical image segmentation can help clinical diagnosis of related eye diseases and is essential for subsequent rational treatment.The baseline model of the ProNet network is UperNet(Unified perceptual parsing Network),and the backbone network is ConvNext(Convolutional Network).A network structure based on depth-separable convolution and 1×1 convolution is used,which has good performance and robustness.We further optimise ProNet mainly in two aspects.One is data enhancement using increased noise and slight angle rotation,which can significantly increase the diversity of data and help the model better learn the patterns and features of the data and improve the model’s performance.Meanwhile,it can effectively expand the training data set,reduce the influence of noise and abnormal data in the data set on the model,and improve the accuracy and reliability of the model.Another is the loss function aspect,and we finally use the focal loss function.The focal loss function is well suited for complex tasks such as object detection.The function will penalise the loss carried by samples that the model misclassifies,thus enabling better training of the model to avoid these errors while solving the category imbalance problem as a way to improve image segmentation density and segmentation accuracy.From the experimental results,the evaluation metrics mIoU(mean Intersection over Union)enhanced by 4.47%,and mDice enhanced by 2.92% compared to the baseline network.Better generalization effects and more accurate image segmentation are achieved.
基金funded by National Natural Science Foundation of China No.62062003Ningxia Natural Science Foundation Project No.2023AAC03293.
文摘The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.
基金This work is supported in part by The National Natural Science Foundation of China(Grant Number 61971078),which provided domain expertise and computational power that greatly assisted the activityThis work was financially supported by Chongqing Municipal Education Commission Grants for-Major Science and Technology Project(Grant Number gzlcx20243175).
文摘Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets.
基金supported by the National Key R&D Program of China(2018AAA0102100)the National Natural Science Foundation of China(No.62376287)+3 种基金the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Key Research and Development Program of Hunan Province(2022SK2054)the Natural Science Foundation of Hunan Province(No.2022JJ30762,2023JJ70016)the 111 Project under Grant(No.B18059).
文摘Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.
基金This researchwas supported by the Deanship of ScientificResearch at Najran University,under the Research Group Funding Program Grant Code(NU/RG/SERC/12/30)This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThis study is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively.