Medical diagnosis software and computer-assisted surgical systems often use segmented image data to help clinicians make decisions. The segmentation extracts the region of interest from the background, which makes the...Medical diagnosis software and computer-assisted surgical systems often use segmented image data to help clinicians make decisions. The segmentation extracts the region of interest from the background, which makes the visualization clearer. However, no segmentation method can guarantee accurate results under all circumstances. As a result, the clinicians need a solution that enables them to check and validate the segmentation accuracy as well as displaying the segmented area without ambiguities. With the method presented in this paper, the real CT or MR image is displayed within the segmented region and the segmented boundaries can be expanded or contracted interactively. By this way, the clinicians are able to check and validate the segmentation visually and make more reliable decisions. After experiments with real data from a hospital, the presented method is proved to be suitable for efficiently detecting segmentation errors. The new algorithm uses new graphic processing uint (GPU) shading functions recently introduced in graphic cards and is fast enough to interact oil the segmented area, which was not possible with previous methods.展开更多
Recent convolutional neural networks(CNNs)based deep learning has significantly promoted fire detection.Existing fire detection methods can efficiently recognize and locate the fire.However,the accurate flame boundary...Recent convolutional neural networks(CNNs)based deep learning has significantly promoted fire detection.Existing fire detection methods can efficiently recognize and locate the fire.However,the accurate flame boundary and shape information is hard to obtain by them,which makes it difficult to conduct automated fire region analysis,prediction,and early warning.To this end,we propose a fire semantic segmentation method based on Global Position Guidance(GPG)and Multi-path explicit Edge information Interaction(MEI).Specifically,to solve the problem of local segmentation errors in low-level feature space,a top-down global position guidance module is used to restrain the offset of low-level features.Besides,an MEI module is proposed to explicitly extract and utilize the edge information to refine the coarse fire segmentation results.We compare the proposed method with existing advanced semantic segmentation and salient object detection methods.Experimental results demonstrate that the proposed method achieves 94.1%,93.6%,94.6%,95.3%,and 95.9%Intersection over Union(IoU)on five test sets respectively which outperforms the suboptimal method by a large margin.In addition,in terms of accuracy,our approach also achieves the best score.展开更多
The mathematic theory for uncertainty model of line segment are summed up to achieve a general conception, and the line error hand model of εσ is a basic uncertainty model that can depict the line accuracy and quali...The mathematic theory for uncertainty model of line segment are summed up to achieve a general conception, and the line error hand model of εσ is a basic uncertainty model that can depict the line accuracy and quality efficiently while the model of εm and error entropy can be regarded as the supplement of it. The error band model will reflect and describe the influence of line uncertainty on polygon uncertainty. Therefore, the statistical characteristic of the line error is studied deeply by analyzing the probability that the line error falls into a certain range. Moreover, the theory accordance is achieved in the selecting the error buffer for line feature and the error indicator. The relationship of the accuracy of area for a polygon with the error loop for a polygon boundary is deduced and computed.展开更多
The segmented filters, based on spectral cutting, proved their efficiency for the multi-correlation. In this article we propose an optimisation of this cutting according to a new error diffusion method.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572154), and the National Basic Research Program of China (Grant No.2003CB716104)Acknowledgment I would like to thank YANG Xin, my tutor, SHANG Yan- feng, SUN Kun of Shanghai Children's Medical Center, and all the people in 3D Visualization Laboratory of Shanghai Jiaotong University for their help during my research.
文摘Medical diagnosis software and computer-assisted surgical systems often use segmented image data to help clinicians make decisions. The segmentation extracts the region of interest from the background, which makes the visualization clearer. However, no segmentation method can guarantee accurate results under all circumstances. As a result, the clinicians need a solution that enables them to check and validate the segmentation accuracy as well as displaying the segmented area without ambiguities. With the method presented in this paper, the real CT or MR image is displayed within the segmented region and the segmented boundaries can be expanded or contracted interactively. By this way, the clinicians are able to check and validate the segmentation visually and make more reliable decisions. After experiments with real data from a hospital, the presented method is proved to be suitable for efficiently detecting segmentation errors. The new algorithm uses new graphic processing uint (GPU) shading functions recently introduced in graphic cards and is fast enough to interact oil the segmented area, which was not possible with previous methods.
基金This work was supported in part by the Important Science and Technology Project of Hainan Province under Grant ZDKJ2020010in part by Frontier Exploration Project Independently Deployed by Institute of Acoustics,Chinese Academy of Sciences under Grant QYTS202015 and Grant QYTS202115.
文摘Recent convolutional neural networks(CNNs)based deep learning has significantly promoted fire detection.Existing fire detection methods can efficiently recognize and locate the fire.However,the accurate flame boundary and shape information is hard to obtain by them,which makes it difficult to conduct automated fire region analysis,prediction,and early warning.To this end,we propose a fire semantic segmentation method based on Global Position Guidance(GPG)and Multi-path explicit Edge information Interaction(MEI).Specifically,to solve the problem of local segmentation errors in low-level feature space,a top-down global position guidance module is used to restrain the offset of low-level features.Besides,an MEI module is proposed to explicitly extract and utilize the edge information to refine the coarse fire segmentation results.We compare the proposed method with existing advanced semantic segmentation and salient object detection methods.Experimental results demonstrate that the proposed method achieves 94.1%,93.6%,94.6%,95.3%,and 95.9%Intersection over Union(IoU)on five test sets respectively which outperforms the suboptimal method by a large margin.In addition,in terms of accuracy,our approach also achieves the best score.
基金Project supported by the National Natural Science Foundation of China (No.40301043) .
文摘The mathematic theory for uncertainty model of line segment are summed up to achieve a general conception, and the line error hand model of εσ is a basic uncertainty model that can depict the line accuracy and quality efficiently while the model of εm and error entropy can be regarded as the supplement of it. The error band model will reflect and describe the influence of line uncertainty on polygon uncertainty. Therefore, the statistical characteristic of the line error is studied deeply by analyzing the probability that the line error falls into a certain range. Moreover, the theory accordance is achieved in the selecting the error buffer for line feature and the error indicator. The relationship of the accuracy of area for a polygon with the error loop for a polygon boundary is deduced and computed.
文摘The segmented filters, based on spectral cutting, proved their efficiency for the multi-correlation. In this article we propose an optimisation of this cutting according to a new error diffusion method.