Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method...Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).展开更多
Image segmentation is a necessary step in image analysis. Support vector machine (SVM) approach is proposed to segment images and its segmentation performance is evaluated. Experimental results show that: the effec...Image segmentation is a necessary step in image analysis. Support vector machine (SVM) approach is proposed to segment images and its segmentation performance is evaluated. Experimental results show that: the effects of kernel function and model parameters on the segmentation performance are significant; SVM approach is less sensitive to noise in image segmentation; The segmentation performance of SVM approach is better than that of back-propagation multi-layer perceptron (BP-MLP) approach and fuzzy c-means (FCM) approach.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
Diabetic retinopathy (DR) is a complication of diabetesmellitus thatappears in the retina. Clinitians use retina images to detect DR pathologicalsigns related to the occlusion of tiny blood vessels. Such occlusion bri...Diabetic retinopathy (DR) is a complication of diabetesmellitus thatappears in the retina. Clinitians use retina images to detect DR pathologicalsigns related to the occlusion of tiny blood vessels. Such occlusion brings adegenerative cycle between the breaking off and the new generation of thinnerand weaker blood vessels. This research aims to develop a suitable retinalvasculature segmentation method for improving retinal screening proceduresby means of computer-aided diagnosis systems. The blood vessel segmentationmethodology relies on an effective feature selection based on SequentialForward Selection, using the error rate of a decision tree classifier in theevaluation function. Subsequently, the classification process is performed bythree alternative approaches: artificial neural networks, decision trees andsupport vector machines. The proposed methodology is validated on threepublicly accessible datasets and a private one provided by Hospital Sant Joanof Reus. In all cases we obtain an average accuracy above 96% with a sensitivityof 72% in the blood vessel segmentation process. Compared with the state-ofthe-art, our approach achieves the same performance as other methods thatneed more computational power.Our method significantly reduces the numberof features used in the segmentation process from 20 to 5 dimensions. Theimplementation of the three classifiers confirmed that the five selected featureshave a good effectiveness, independently of the classification algorithm.展开更多
Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmenta...Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an optimal set of texture features including high order statistical texture features and anatomical structural features. Then, it creates liver distribution image by classifying the original image pixelwisely using support vector machines. Lastly, it uses a group of morphological operations to locate the liver organ accurately in the image. The novelty of the approach is resided in the fact that the features are so selected that both local and global texture distributions are considered, which is important in liver organ segmentation where neighbouring tissues and organs have similar greyscale distributions. Experiment results of liver segmentation on CT images using the proposed method are presented with performance validation and discussion.展开更多
Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type,scenarios and level of blurriness.In this paper,we propo...Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type,scenarios and level of blurriness.In this paper,we propose an effective method for blur detection and segmentation based on transfer learning concept.The proposed method consists of two separate steps.In the first step,genetic programming(GP)model is developed that quantify the amount of blur for each pixel in the image.The GP model method uses the multiresolution features of the image and it provides an improved blur map.In the second phase,the blur map is segmented into blurred and non-blurred regions by using an adaptive threshold.A model based on support vector machine(SVM)is developed to compute adaptive threshold for the input blur map.The performance of the proposed method is evaluated using two different datasets and compared with various state-of-the-art methods.The comparative analysis reveals that the proposed method performs better against the state-of-the-art techniques.展开更多
Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection ...Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection and segmentation is a challenging task.Hence,the performance of the blur measure operator is an essential factor and needs improvement to attain perfection.In this paper,we propose an effective blur measure based on local binary pattern(LBP)with adaptive threshold for blur detection.The sharpness metric developed based on LBP used a fixed threshold irrespective of the type and level of blur,that may not be suitable for images with variations in imaging conditions,blur amount and type.Contrarily,the proposed measure uses an adaptive threshold for each input image based on the image and blur properties to generate improved sharpness metric.The adaptive threshold is computed based on the model learned through support vector machine(SVM).The performance of the proposed method is evaluated using two different datasets and is compared with five state-of-the-art methods.Comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all of the compared methods.展开更多
In this paper, the exact analytical solution of the rectangular plate having simplysupported segments mixed with free segments of straight edges are first given by means of the method of reciprocal theorem.By comparis...In this paper, the exact analytical solution of the rectangular plate having simplysupported segments mixed with free segments of straight edges are first given by means of the method of reciprocal theorem.By comparison .we calculate the same question by finite element method.Thecomparison shows that the analytical solution is correct.展开更多
A method of medical image segmentation based on support vector machine (SVM) for density estimation is presented. We used this estimator to construct a prior model of the image intensity and curvature profile of the s...A method of medical image segmentation based on support vector machine (SVM) for density estimation is presented. We used this estimator to construct a prior model of the image intensity and curvature profile of the structure from training images. When segmenting a novel image similar to the training images, the technique of narrow level set method is used. The higher dimensional surface evolution metric is defined by the prior model instead of by energy minimization function. This method offers several advantages. First, SVM for density estimation is consistent and its solution is sparse. Second, compared to the traditional level set methods, this method incorporates shape information on the object to be segmented into the segmentation process. Segmentation results are demonstrated on synthetic images, MR images and ultrasonic images.展开更多
Osteosarcoma is primary malignant neoplasms derived from cells of mesenchymal origin, and often has distinct phenotypes at different stages. The location of tumor and reaction zone can be identified by an expert in ma...Osteosarcoma is primary malignant neoplasms derived from cells of mesenchymal origin, and often has distinct phenotypes at different stages. The location of tumor and reaction zone can be identified by an expert in magnetic resonance imaging (MRI), with MRI being one of the choices for evaluating the extent of osteosarcoma. However, it is still a challenge to automatically extract tumor from its surrounding tissues because of their low intensity differences in MRI. We investigated an approach based on Zernike moment and support vector machine (SVM) for osteosarcoma segmentation in T1-weighted image (TIWI). Firstly, the different order moments around each pixel are calculated in small windows. Secondly, the grayscale and the module values of different order moments are used as a texture feature vector which is then used as the training set for SVM. Finally, an SVM classifier is trained based on this set of features to identify the osteosarcoma, and the segmented tumor tissue is rendered in 3D by the ray casting algorithm based on graphics processing unit (GPU). The performance of the method is validated on T1WI, showing that the segmentation method has a high similarity index with the expert's manual segmentation.展开更多
Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identi...Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.展开更多
针对小样本语义分割中同类别支持图像与查询图像存在外观差异较大的问题,提出融合高斯过程的自支持匹配小样本语义分割模型。提出的模型在自支持匹配小样本语义分割模型的基础上,首先融入高斯过程,对分布在深层特征空间上的复杂外观进...针对小样本语义分割中同类别支持图像与查询图像存在外观差异较大的问题,提出融合高斯过程的自支持匹配小样本语义分割模型。提出的模型在自支持匹配小样本语义分割模型的基础上,首先融入高斯过程,对分布在深层特征空间上的复杂外观进行建模,捕获更多空间细节信息来表示数据分布;随后设计特征增强模块,在空间层对支持特征与查询特征进行信息交互,在通道层进行注意力加权,进一步增强相同类之间的全局相似性,捕获更多目标类别信息;最后利用Gram矩阵量化支持图像和查询图像之间外观差异的大小,从而融合原型匹配的结果,产生更准确的分割图像。实验结果表明:与现有方法相比,所提模型在更强的主干网络下具有较好的分割结果和更少的参数量,在5-shot的设定下,所提模型在PASCAL−5i数据集上平均交并比(mean Intersection over Union,mIoU)达到最优值,提升了0.4%;在COCO−20i数据集上的子集mIoU取得最优值,分别提升了2.2%和1.0%,表明该模型的有效性和先进性。展开更多
文摘Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).
基金Supported by the National Natural Science Foundation of China (No. 60475024)
文摘Image segmentation is a necessary step in image analysis. Support vector machine (SVM) approach is proposed to segment images and its segmentation performance is evaluated. Experimental results show that: the effects of kernel function and model parameters on the segmentation performance are significant; SVM approach is less sensitive to noise in image segmentation; The segmentation performance of SVM approach is better than that of back-propagation multi-layer perceptron (BP-MLP) approach and fuzzy c-means (FCM) approach.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
基金This work has been funded by the research project PI18/00169 from Instituto de Salud Carlos III&FEDER funds.University Rovira i.Virgili also provided funds with Project 2019PFR-B2-61.
文摘Diabetic retinopathy (DR) is a complication of diabetesmellitus thatappears in the retina. Clinitians use retina images to detect DR pathologicalsigns related to the occlusion of tiny blood vessels. Such occlusion brings adegenerative cycle between the breaking off and the new generation of thinnerand weaker blood vessels. This research aims to develop a suitable retinalvasculature segmentation method for improving retinal screening proceduresby means of computer-aided diagnosis systems. The blood vessel segmentationmethodology relies on an effective feature selection based on SequentialForward Selection, using the error rate of a decision tree classifier in theevaluation function. Subsequently, the classification process is performed bythree alternative approaches: artificial neural networks, decision trees andsupport vector machines. The proposed methodology is validated on threepublicly accessible datasets and a private one provided by Hospital Sant Joanof Reus. In all cases we obtain an average accuracy above 96% with a sensitivityof 72% in the blood vessel segmentation process. Compared with the state-ofthe-art, our approach achieves the same performance as other methods thatneed more computational power.Our method significantly reduces the numberof features used in the segmentation process from 20 to 5 dimensions. Theimplementation of the three classifiers confirmed that the five selected featureshave a good effectiveness, independently of the classification algorithm.
文摘Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an optimal set of texture features including high order statistical texture features and anatomical structural features. Then, it creates liver distribution image by classifying the original image pixelwisely using support vector machines. Lastly, it uses a group of morphological operations to locate the liver organ accurately in the image. The novelty of the approach is resided in the fact that the features are so selected that both local and global texture distributions are considered, which is important in liver organ segmentation where neighbouring tissues and organs have similar greyscale distributions. Experiment results of liver segmentation on CT images using the proposed method are presented with performance validation and discussion.
基金This work was supported by the BK-21 FOUR program through National Research Foundation of Korea(NRF)under Ministry of Education.
文摘Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type,scenarios and level of blurriness.In this paper,we propose an effective method for blur detection and segmentation based on transfer learning concept.The proposed method consists of two separate steps.In the first step,genetic programming(GP)model is developed that quantify the amount of blur for each pixel in the image.The GP model method uses the multiresolution features of the image and it provides an improved blur map.In the second phase,the blur map is segmented into blurred and non-blurred regions by using an adaptive threshold.A model based on support vector machine(SVM)is developed to compute adaptive threshold for the input blur map.The performance of the proposed method is evaluated using two different datasets and compared with various state-of-the-art methods.The comparative analysis reveals that the proposed method performs better against the state-of-the-art techniques.
基金This work is supported by the BK-21 FOUR program and by the Creative Challenge Research Program(2021R1I1A1A01052521)through National Research Foundation of Korea(NRF)under Ministry of Education,Korea.
文摘Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection and segmentation is a challenging task.Hence,the performance of the blur measure operator is an essential factor and needs improvement to attain perfection.In this paper,we propose an effective blur measure based on local binary pattern(LBP)with adaptive threshold for blur detection.The sharpness metric developed based on LBP used a fixed threshold irrespective of the type and level of blur,that may not be suitable for images with variations in imaging conditions,blur amount and type.Contrarily,the proposed measure uses an adaptive threshold for each input image based on the image and blur properties to generate improved sharpness metric.The adaptive threshold is computed based on the model learned through support vector machine(SVM).The performance of the proposed method is evaluated using two different datasets and is compared with five state-of-the-art methods.Comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all of the compared methods.
文摘In this paper, the exact analytical solution of the rectangular plate having simplysupported segments mixed with free segments of straight edges are first given by means of the method of reciprocal theorem.By comparison .we calculate the same question by finite element method.Thecomparison shows that the analytical solution is correct.
基金Project (No. 2003CB716103) supported by the National BasicResearch Program (973) of China and the Key Lab for Image Proc-essing and Intelligent Control of National Education Ministry, China
文摘A method of medical image segmentation based on support vector machine (SVM) for density estimation is presented. We used this estimator to construct a prior model of the image intensity and curvature profile of the structure from training images. When segmenting a novel image similar to the training images, the technique of narrow level set method is used. The higher dimensional surface evolution metric is defined by the prior model instead of by energy minimization function. This method offers several advantages. First, SVM for density estimation is consistent and its solution is sparse. Second, compared to the traditional level set methods, this method incorporates shape information on the object to be segmented into the segmentation process. Segmentation results are demonstrated on synthetic images, MR images and ultrasonic images.
文摘Osteosarcoma is primary malignant neoplasms derived from cells of mesenchymal origin, and often has distinct phenotypes at different stages. The location of tumor and reaction zone can be identified by an expert in magnetic resonance imaging (MRI), with MRI being one of the choices for evaluating the extent of osteosarcoma. However, it is still a challenge to automatically extract tumor from its surrounding tissues because of their low intensity differences in MRI. We investigated an approach based on Zernike moment and support vector machine (SVM) for osteosarcoma segmentation in T1-weighted image (TIWI). Firstly, the different order moments around each pixel are calculated in small windows. Secondly, the grayscale and the module values of different order moments are used as a texture feature vector which is then used as the training set for SVM. Finally, an SVM classifier is trained based on this set of features to identify the osteosarcoma, and the segmented tumor tissue is rendered in 3D by the ray casting algorithm based on graphics processing unit (GPU). The performance of the method is validated on T1WI, showing that the segmentation method has a high similarity index with the expert's manual segmentation.
基金The authors would like to confirm that this research work was funded by Institutional Fund Projects under Grant No.(IFPIP:646-829-1443)。
文摘Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.
文摘针对小样本语义分割中同类别支持图像与查询图像存在外观差异较大的问题,提出融合高斯过程的自支持匹配小样本语义分割模型。提出的模型在自支持匹配小样本语义分割模型的基础上,首先融入高斯过程,对分布在深层特征空间上的复杂外观进行建模,捕获更多空间细节信息来表示数据分布;随后设计特征增强模块,在空间层对支持特征与查询特征进行信息交互,在通道层进行注意力加权,进一步增强相同类之间的全局相似性,捕获更多目标类别信息;最后利用Gram矩阵量化支持图像和查询图像之间外观差异的大小,从而融合原型匹配的结果,产生更准确的分割图像。实验结果表明:与现有方法相比,所提模型在更强的主干网络下具有较好的分割结果和更少的参数量,在5-shot的设定下,所提模型在PASCAL−5i数据集上平均交并比(mean Intersection over Union,mIoU)达到最优值,提升了0.4%;在COCO−20i数据集上的子集mIoU取得最优值,分别提升了2.2%和1.0%,表明该模型的有效性和先进性。