This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place ...This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place of the ROM look-up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS. The design procedure for implementing the nonlinear DAC is presented. To ensure high speed, current mode logic (CML) is used. The chip is implemented in Chartered 0.35μm COMS technology with active area of 2.0 × 2.5 mm^2 and total power consumption of 400 mW at a single 3.3 V supply voltage. The maximum operating frequency is 850 MHz at room temperature and 1.0 GHz at 0℃.展开更多
This paper presents an 11-bit 160 MS/s 2-channel current-steering digital-to-analog converter(DAC)IP. The circuit and layout are carefully designed to optimize its performance and area. A 6-2-3 segmented structure i...This paper presents an 11-bit 160 MS/s 2-channel current-steering digital-to-analog converter(DAC)IP. The circuit and layout are carefully designed to optimize its performance and area. A 6-2-3 segmented structure is used for the trade-off among linearity, area and layout complexity. The sizes of current source transistors are calculated out according to the process matching parameter. The unary current cells are placed in a one-dimension distribution to simplify the layout routing, spare area and wiring layer. Their sequences are also carefully designed to reduce integral nonlinearity. The test result presents an SFDR of 72 dBc at 4.88 MHz input signal with DNL ≤60.25 LSB, INL ≤6 0.8 LSB. The full-scale output current is 5 m A with a 2.5 V analog power supply. The core of each channel occupies 0.08 mm^2 in a 1P-8M 55 nm CMOS process.展开更多
A 6-bit 4 GS/s, high-speed and power-efficient DAC for ultra-high-speed transceivers in 60 GHz band millimeter wave technology is presented. A novel pseudo-thermometer architecture is proposed to realize a good compro...A 6-bit 4 GS/s, high-speed and power-efficient DAC for ultra-high-speed transceivers in 60 GHz band millimeter wave technology is presented. A novel pseudo-thermometer architecture is proposed to realize a good compromise between the fast conversion speed and the chip area. Symmetrical and compact floor planning and layout techniques including tree-like routing, cross-quading and common-centroid method are adopted to guarantee the chip is fully functional up to near-Nyquist frequency in a standard 0.18 #m CMOS process. Post simulation results corroborate the feasibility of the designed DAC, which can perform good static and dynamic linearity without calibration. DNL errors and INL errors can be controlled within 4-0.28 LSB and 4-0.26 LSB, respectively. SFDR at 4 GHz clock frequency for a 1.9 GHz near-Nyquist sinusoidal output signal is 40.83 dB and the power dissipation is less than 37 roW.展开更多
A 12-bit, 100-MHz CMOS current-steering D/A converter for CNC (computer number control) systems is presented. To reduce the glitch and increase the SFDR (spurious-free dynamic range), a low crosspoint switch drive...A 12-bit, 100-MHz CMOS current-steering D/A converter for CNC (computer number control) systems is presented. To reduce the glitch and increase the SFDR (spurious-free dynamic range), a low crosspoint switch driver and a special dummy switch are applied. In addition, a 4-5-3 segmental structure is used to optimize the performance and layout area. After improvement, the biggest glitch energy decreased from 6.7 pVs to 1.7 pVs, the INL decreased from 2 LSB to 0.8 LSB, the SFDR is 78 dB at a 100-MSPS clock rate and 1 MHz output frequency. This DAC can deliver up to 20.8 mA full-scale current into a 50 Ω load. The power when operating at full-scale current is 163 mW. The layout area is 1.8 × 1.8 mm2 in a standard 0.35-um CMOS technology.展开更多
分析了目前分段电流舵数模转换器(DAC)在动态性能提升和芯片面积缩小等方面的局限性。提出了动态元件匹配(DEM)译码技术。设计了16 bit DAC中的DEM译码电路结构,分析了DEM译码技术的原理。对该16 bit DAC的动态性能等进行了详细仿真...分析了目前分段电流舵数模转换器(DAC)在动态性能提升和芯片面积缩小等方面的局限性。提出了动态元件匹配(DEM)译码技术。设计了16 bit DAC中的DEM译码电路结构,分析了DEM译码技术的原理。对该16 bit DAC的动态性能等进行了详细仿真,并完成了整体版图设计。该DAC核心部分芯片面积仅为2. 2 mm^2。采用0. 18μm CMOS工艺完成了该DAC的加工和性能参数测试。在1 GHz采样率和100 MHz输入信号频率条件下,该DAC的无杂散动态范围约为67 dB,三阶互调失真约为76 dB,整体性能优于目前同类研究成果。展开更多
文摘This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place of the ROM look-up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS. The design procedure for implementing the nonlinear DAC is presented. To ensure high speed, current mode logic (CML) is used. The chip is implemented in Chartered 0.35μm COMS technology with active area of 2.0 × 2.5 mm^2 and total power consumption of 400 mW at a single 3.3 V supply voltage. The maximum operating frequency is 850 MHz at room temperature and 1.0 GHz at 0℃.
基金supported by the Major National Science&Technology Program of China(No.2012ZX03004004-002)
文摘This paper presents an 11-bit 160 MS/s 2-channel current-steering digital-to-analog converter(DAC)IP. The circuit and layout are carefully designed to optimize its performance and area. A 6-2-3 segmented structure is used for the trade-off among linearity, area and layout complexity. The sizes of current source transistors are calculated out according to the process matching parameter. The unary current cells are placed in a one-dimension distribution to simplify the layout routing, spare area and wiring layer. Their sequences are also carefully designed to reduce integral nonlinearity. The test result presents an SFDR of 72 dBc at 4.88 MHz input signal with DNL ≤60.25 LSB, INL ≤6 0.8 LSB. The full-scale output current is 5 m A with a 2.5 V analog power supply. The core of each channel occupies 0.08 mm^2 in a 1P-8M 55 nm CMOS process.
基金Project supported by the National Natural Science Foundation of China(No.61271331)the Jiangsu Provincial PAPD Program
文摘A 6-bit 4 GS/s, high-speed and power-efficient DAC for ultra-high-speed transceivers in 60 GHz band millimeter wave technology is presented. A novel pseudo-thermometer architecture is proposed to realize a good compromise between the fast conversion speed and the chip area. Symmetrical and compact floor planning and layout techniques including tree-like routing, cross-quading and common-centroid method are adopted to guarantee the chip is fully functional up to near-Nyquist frequency in a standard 0.18 #m CMOS process. Post simulation results corroborate the feasibility of the designed DAC, which can perform good static and dynamic linearity without calibration. DNL errors and INL errors can be controlled within 4-0.28 LSB and 4-0.26 LSB, respectively. SFDR at 4 GHz clock frequency for a 1.9 GHz near-Nyquist sinusoidal output signal is 40.83 dB and the power dissipation is less than 37 roW.
基金Project supported by the Hubei Natural Science Foundation of China(No.2010CDB02706)
文摘A 12-bit, 100-MHz CMOS current-steering D/A converter for CNC (computer number control) systems is presented. To reduce the glitch and increase the SFDR (spurious-free dynamic range), a low crosspoint switch driver and a special dummy switch are applied. In addition, a 4-5-3 segmental structure is used to optimize the performance and layout area. After improvement, the biggest glitch energy decreased from 6.7 pVs to 1.7 pVs, the INL decreased from 2 LSB to 0.8 LSB, the SFDR is 78 dB at a 100-MSPS clock rate and 1 MHz output frequency. This DAC can deliver up to 20.8 mA full-scale current into a 50 Ω load. The power when operating at full-scale current is 163 mW. The layout area is 1.8 × 1.8 mm2 in a standard 0.35-um CMOS technology.