期刊文献+
共找到620篇文章
< 1 2 31 >
每页显示 20 50 100
Segregations and desorptions of Ge atoms in nanocomposite Si_(1-x)Ge_x films during high-temperature annealing
1
作者 汪煜 杨濛 +6 位作者 王刚 魏晓旭 王军转 李昀 左则文 郑有炓 施毅 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期439-443,共5页
Nanocomposite Si1-xGex films are deposited by dual-source jet-type inductively coupled plasma chemical vapor deposition (jet-ICPCVD). The segregations and desorptions of Ge atoms, which dominate the structural evolu... Nanocomposite Si1-xGex films are deposited by dual-source jet-type inductively coupled plasma chemical vapor deposition (jet-ICPCVD). The segregations and desorptions of Ge atoms, which dominate the structural evolutions of the films during high-temperature annealing, are investigated. When the annealing temperature (Ta) is 900℃, the nanocomposite Si1-xGex films are well crystallized, and nanocrystals (NCs) with the core-shell structure form in the films. After being annealed at 1000℃ (above the melting point of bulk Ge), Ge atoms accumulate on the surfaces of Ge-rich films, whereas pits appear on films with lower Ge content, resulting from desorption. Meanwhile, voids are observed in the films. A cone-like structure involving the percolation of the homogeneous clusters and the crystallization of NCs enhances Ge segregation. 展开更多
关键词 SI1-XGEX ANNEALING SEGREGATION DESORPTION
下载PDF
Effect of granular shape on radial segregation in a two-dimensional drum
2
作者 徐悦 李然 +3 位作者 迟志鹏 修文正 孙其诚 杨晖 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期509-514,共6页
Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically h... Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically have different shapes,the focus is shifting towards shape segregation.In this study,experiments are conducted by mixing cubic and spherical grains.The results indicate that spherical grains gather at the center and cubic grains are distributed around them,and the degree of segregation is low.Through experiments,a structured analysis of local regions is conducted to explain the inability to form stable segregation patterns with obviously different geometric shapes.Further,through simulations,the reasons for the central and peripheral distributions are explained by comparing velocities and the number of collisions of the grains in the flow layer. 展开更多
关键词 granular materials cubic grains shape segregation segregation mechanism
下载PDF
Multi-physical fields distribution in billet during helical electromagnetic stirring:A numerical simulation research
3
作者 Dong Pan Qing-tao Guo +3 位作者 Kai-lun Zhang Fu-zhi Yu Yu-ying Li Yu-bao Xiao 《China Foundry》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens... Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets. 展开更多
关键词 BILLET electromagnetic stirring HELICAL SOLIDIFICATION element segregation numerical simulation
下载PDF
Grain refinement of Mg-Ca alloys by native MgO particles
4
作者 Shihao Wang Yun Wang +1 位作者 Quentin M.Ramasse Zhongyun Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期980-996,共17页
In Mg-Ca alloys the grain refining mechanism,in particular regarding the role of nucleant substrates,remains the object of debates.Although native MgO is being recognised as a nucleating substrate accounting for grain... In Mg-Ca alloys the grain refining mechanism,in particular regarding the role of nucleant substrates,remains the object of debates.Although native MgO is being recognised as a nucleating substrate accounting for grain refinement of Mg alloys,the possible interactions of MgO with alloying elements that may alter the nucleation potency have not been elucidated yet.Herein,we design casting experiments of Mg-xCa alloys varied qualitatively in number density of native MgO,which are then comprehensively studied by advanced electron microscopy.The results show that grain refinement is enhanced as the particle number density of MgO increases.The native MgO particles are modified by interfacial layers due to the co-segregation of Ca and N solute atoms at the MgO/Mg interface.Using aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy,we reveal the nature of these Ca/N interfacial layers at the atomic scale.Irrespective of the crystallographic termination of MgO,Ca and N co-segregate at the MgO/Mg interface and occupy Mg and O sites,respectively,forming an interfacial structure of a few atomic layers.The interfacial structure is slightly expanded,less ordered and defective compared to the MgO matrix due to compositional deviations,whereby the MgO substrate is altered as a poorer template to nucleate Mg solid.Upon solidification in a TP-1 mould,the impotent MgO particles account for the grain refining mechanism,where they are suggested to participate into nucleation and grain initiation processes in an explosive manner.This work not only reveals the atomic engineering of a substrate through interfacial segregation but also demonstrates the effectiveness of a strategy whereby native MgO particles can be harnessed for grain refinement in Mg-Ca alloys. 展开更多
关键词 Mg-Ca alloy Grain refinement MGO Interfacial segregation STEM/EELS Solidification.
下载PDF
Convection and Stratification of Temperature and Concentration
5
作者 Alexey Fedyushkin 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1351-1364,共14页
This study is devoted to an analysis of natural convection and the emergence of delamination in an incompressible fluid encapsulated in a closed region heated from the side.Weak,medium and intensive modes of stationar... This study is devoted to an analysis of natural convection and the emergence of delamination in an incompressible fluid encapsulated in a closed region heated from the side.Weak,medium and intensive modes of stationary laminar thermal and thermo-concentration convection are considered.It is shown that nonlinear flow features can radically change the flow structure and characteristics of heat and mass transfer.Moreover,the temperature and concentration segregation in the center of the square region display a non-monotonic dependence on the Grashof number(flow intensity).The formation of a nonstationary periodic structure of thermal convection in boundary layers and in the core of a convective flow in the closed region is also examined.Details of the formation of countercurrents inside the region with the direction opposite to the main convective flow are given.Finally,the influence of vertical and horizontal vibrations on oscillatory convection is analyzed in detail. 展开更多
关键词 Natural convection STRATIFICATION SEGREGATION numerical simulation vibrations
下载PDF
Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment
6
作者 Jingwen Zhang Liming Yu +6 位作者 Yongchang Liu Ran Ding Chenxi Liu Zongqing Ma Huijun Li Qiuzhi Gao Hui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1037-1047,共11页
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the... The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants. 展开更多
关键词 G115 steel fine-grained heat-affected zone creep strength element segregation nano-sized precipitates
下载PDF
Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L.
7
作者 Xiaohui Wu Mengyuan Zhang +11 位作者 Zheng Zheng Ziqi Sun Feiyan Qi Hua Liu Juan Wang Mengmeng Wang Ruifang Zhao Yue Wu Xiao Wang Hongfei Liu Wenzhao Dong Xinyou Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1494-1506,共13页
Peanut(Arachis hypogaea L.)is a globally important oil crop.Web blotch is one of the most important foliar diseases affecting peanut,which results in serious yield losses worldwide.Breeding web blotch-resistant peanut... Peanut(Arachis hypogaea L.)is a globally important oil crop.Web blotch is one of the most important foliar diseases affecting peanut,which results in serious yield losses worldwide.Breeding web blotch-resistant peanut varieties is the most effective and economically viable method for minimizing yield losses due to web blotch.In the current study,a bulked segregant analysis with next-generation sequencing was used to analyze an F2:3 segregating population and identify candidate loci related to web blotch resistance.Based on the fine-mapping of the candidate genomic interval using kompetitive allele-specific PCR(KASP)markers,we identified a novel web blotch resistance-related locus spanning approximately 169 kb on chromosome 16.This region included four annotated genes,of which only Arahy.35VVQ3 had a non-synonymous single nucleotide polymorphism in the coding region between the two parents.Two markers(Chr.16.12872635 and Chr.16.12966357)linked to this gene were shown to be co-segregated with the resistance of peanut web blotch by 72 randomly selected recombinant inbred lines(RIL),which could be used in marker-assisted breeding of resistant peanut varieties. 展开更多
关键词 peanut web blotch bulked segregant analysis KAsP markers resistant gene
下载PDF
A 1-bp deletion in the MC04g1399 is highly associated with failure to produce fruit wart in bitter gourd
8
作者 Jia Liu Junjie Cui +7 位作者 Jichi Dong Jian Zhong Chunfeng Zhong Fanchong Yuan Wendong Guan Fang Hu Jiaowen Cheng Kailin Hu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期171-180,共10页
Fruit wart is an important appearance trait influencing consumer preferences of bitter gourd(Momordica charantia L.).The molecular genetic mechanisms underlying fruit wart formation in bitter gourd are largely unknown... Fruit wart is an important appearance trait influencing consumer preferences of bitter gourd(Momordica charantia L.).The molecular genetic mechanisms underlying fruit wart formation in bitter gourd are largely unknown.In this study,genetic analysis based on four generations showed that fruit wart formation in bitter gourd was controlled by a single dominant locus named as Fwa.The Fwa locus was initially mapped into a 4.82 Mb region on pseudochromosome 4 by BSA-seq analysis and subsequently narrowed down to a 286.30 kb region by linkage analysis.A large F2population consisting of 2360 individuals was used to screen recombinants,and the Fwa locus was finally fine mapped into a 22.70 kb region harboring four protein-coding genes through recombination analysis.MC04g1399,encoding an epidermal patterning factor 2-like protein,was proposed as the best candidate gene for Fwa via sequence variation and expression analysis.In addition,a 1-bp insertion and deletion(InDel)variation within MC04g1399 was converted to a cleaved amplified polymorphic sequence(CAPS)marker that could precisely distinguish between the warty and non-warty types with an accuracy rate of 100%among a wide panel of 126 bitter gourd germplasm resources.Our results not only provide a scientific basis for deciphering the molecular mechanisms underlying fruit wart formation but also provide a powerful tool for efficient genetic improvement of fruit wart via marker-assisted selection. 展开更多
关键词 Bitter gourd Fruit wart Bulk segregant analysis FINE-MAPPING Candidate gene
下载PDF
CircPMS1 promotes proliferation of pulmonary artery smooth muscle cells,pulmonary microvascular endothelial cells,and pericytes under hypoxia
9
作者 Xiaoyi Hu Shang Wang +9 位作者 Hui Zhao Yaqin Wei Ruowang Duan Rong Jiang Wenhui Wu Qinhua Zhao Sugang Gong Lan Wang Jinming Liu Ping Yuan 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期310-323,共14页
Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia rem... Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia remain unknown.Here,we identified co-differentially expressed circRNAs and determined their putative roles in the proliferation of pulmonary artery smooth muscle cells(PASMCs),pulmonary microvascular endothelial cells(PMECs),and pericytes(PCs)under hypoxia.Methods:Whole transcriptome sequencing was performed to analyze the differential expression of circRNAs in three different vascular cell types.Bioinformatic analysis was used to predict their putative biological function.Quantitative real-time polymerase chain reaction,Cell Counting Kit-8,and EdU Cell Proliferation assays were carried out to determine the role of circular postmeiotic segregation 1(circPMS1)as well as its potential sponge mechanism in PASMCs,PMECs,and PCs.Results:PASMCs,PMECs,and PCs exhibited 16,99,and 31 differentially expressed circRNAs under hypoxia,respectively.CircPMS1 was upregulated in PASMCs,PMECs,and PCs under hypoxia and enhanced the proliferation of vascular cells.CircPMS1may upregulate DEP domain containing 1(DEPDC1)and RNA polymerase II subunit D expression by targeting microRNA-432-5p(miR-432-5p)in PASMCs,upregulate MAX interactor 1(MXI1)expression by targeting miR-433-3p in PMECs,and upregulate zinc finger AN1-type containing 5(ZFAND5)expression by targeting miR-3613-5p in PCs.Conclusions:Our results suggest that circPMS1 promotes cell proliferation through the miR-432-5p/DEPDC1 or miR-432-5p/POL2D axis in PASMCs,through the miR-433-3p/MXI1 axis in PMECs,and through the miR-3613-5p/ZFAND5 axis in PCs,which provides putative targets for the early diagnosis and treatment of PH. 展开更多
关键词 circular postmeiotic segregation 1 circular RNAs HYPOXIA pulmonary hypertension vascular cells
下载PDF
The occurrence,inheritance,and segregation of complex genomic structural variation in synthetic Brassica napus
10
作者 Dandan Hu Jin Lu +12 位作者 Wenwen Li Yinghui Yang Junxiong Xu Han Qin Hao Wang Yan Niu Huaiqi Zhang Qingqing Liu Xiangxiang He Annaliese S.Mason JChris Pires Zhiyong Xiong Jun Zou 《The Crop Journal》 SCIE CSCD 2024年第2期515-528,共14页
"Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic s... "Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic structural variation(SV).However,how such SV arises,is inherited and fixed,and how it affects important traits,has rarely been comprehensively and quantitively studied in advanced generation synthetic lines.A better understanding of these processes will aid breeders in knowing how to best utilize synthetic allopolyploids in breeding programs.Here,we analyzed three genetic mapping populations(735 DH lines)derived from crosses between advanced synthetic and conventional Brassica napus(rapeseed)lines,using whole-genome sequencing to determine genome composition.We observed high tolerance of large structural variants,particularly toward the telomeres,and preferential selection for balanced homoeologous exchanges(duplication/deletion events between the A and C genomes resulting in retention of gene/chromosome dosage between homoeologous chromosome pairs),including stable events involving whole chromosomes("pseudoeuploidy").Given the experimental design(all three populations shared a common parent),we were able to observe that parental SV was regularly inherited,showed genetic hitchhiking effects on segregation,and was one of the major factors inducing adjacent novel and larger SV.Surprisingly,novel SV occurred at low frequencies with no significant impacts on observed fertility and yield-related traits in the advanced generation synthetic lines.However,incorporating genome-wide SV in linkage mapping explained significantly more genetic variance for traits.Our results provide a framework for detecting and understanding the occurrence and inheritance of genomic SV in breeding programs,and support the use of synthetic parents as an important source of novel trait variation. 展开更多
关键词 ALLOPOLYPLOID Large Genome structural variation Linkage mapping Synthetic polyploids Inheritance and segregation
下载PDF
Effect of casting process on the inner-wall band segregation of high-strength antisulfur pipes
11
作者 LUO Ming ZHANG Zhonghua 《Baosteel Technical Research》 CAS 2024年第1期27-36,共10页
Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic s... Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored. 展开更多
关键词 high strength antisulfur pipe casting process spot segregation band segregation
下载PDF
Genomic signatures of selection,local adaptation and production type characterisation of East Adriatic sheep breeds
12
作者 Boris Lukic Ino Curik +4 位作者 Ivana Drzaic Vlatko Galić Mario Shihabi LubošVostry Vlatka Cubric-Curik 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期546-562,共17页
Background The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations.Sheep production system is extensive and generally c... Background The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations.Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production(carcass,wool and milk yield).Therefore,eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation(EAS),are generally considered as multipurpose breeds(milk,meat and wool),not specialised for a particular type of production,but known for their robustness and resistance to certain environmental conditions.Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures,decipher their biological and productive functionality,and provide a"genomic"characterization of EAS adaptation and determine its production type.Results We identified positive selection signatures in EAS using several methods based on reduced local variation,linkage disequilibrium and site frequency spectrum(eROHi,iHS,nSL and CLR).Our analyses identified numerous genomic regions and genes(e.g.,desmosomal cadherin and desmoglein gene families)associated with environmental adaptation and economically important traits.Most candidate genes were related to meat/production and health/immune response traits,while some of the candidate genes discovered were important for domestication and evolutionary processes(e.g.,HOXa gene family and FSIP2).These results were also confirmed by GO and QTL enrichment analysis.Conclusions Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type,ultimately providing a new opportunity for future breeding programmes.At the same time,the numerous genes identified will improve our understanding of ruminant(sheep)robustness and resistance in the harsh and specific Mediterranean environment. 展开更多
关键词 Composite-likelihood ratio East Adriatic sheep Extreme ROH islands Genomic selection signatures Integrated haplotype score Number of segregating sites by length
下载PDF
Multiple radial phosphorus segregations in GaAsP core-shell nanowires
13
作者 H.Aruni Fonseka Yunyan Zhang +3 位作者 James A.Gott Richard Beanland Huiyun Liu Ana M.Sanchez 《Nano Research》 SCIE EI CAS CSCD 2021年第1期157-164,共8页
Highly faceted geometries such as nanowires are prone toform self-formed features,especially those that are driven by segregation.Understanding these features is important in preventing their formation,understanding t... Highly faceted geometries such as nanowires are prone toform self-formed features,especially those that are driven by segregation.Understanding these features is important in preventing their formation,understanding their effects on nanowire properties,or engineering them for applications.Single elemental segregation lines that run along the radii of the hexagonal cross-section have been a common observation in alloy semiconductor nanowires.Here,in GaAsP nanowires,two additional P rich bands are formed on either side of the primary band,resulting in a total of three segregation bands in the vicinity of three of the alternating radii.These bands are less intense than the primary band and their formation can be attributed to the inclined nanofacets that form in the vicinity of the vertices.The formation of the secondary bands requires a higher composition of P in the shell,and to be grown under conditions that increase the diffusivity difference between As and P.Furthermore,it is observed that the primary band can split into two narrow and parallel bands.This can take place in all six radii,making the cross sections to have up to a maximum of 18 radial segregation bands.With controlled growth,these features could be exploited to assemble multiple different quantum structures in a new dimension(circumferential direction)within nanowires. 展开更多
关键词 compound semiconductor alloys radial segregations three-fold symmetry surface chemical potential
原文传递
Role of extrusion rate on the microstructure and tensile properties evolution of ultrahigh-strength low-alloy Mg-1.0Al-1.0Ca-0.4Mn(wt.%)alloy 被引量:4
14
作者 X.Q.Liu X.G.Qiao +3 位作者 R.S.Pei Y.Q.Chi L.Yuan M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期553-561,共9页
Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical proper... Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical properties of the AXM1104 alloy was systematically studied. With the increasing of extrusion rate, the mean dynamically recrystallized(DRXed) grain size of the low alloy and average particles diameter of precipitate second phases were increased, while the degree of grain boundary segregation and the intensity of the basal fiber texture were decreased. With the rising of extrusion rate from 1.0 to 7.0 mm/s, the tensile yield strength(TYS) of the as-extruded AXM1104 alloy was decreased from 445 MPa to 249 MPa, while the elongation to failure(EL) was increased from 5.0% to 17.6%. The TYS, ultimate tensile strength(UTS) and EL of the AXM1104 alloy extruded at the ram speed of 1.5 mm/s was 412 MPa, 419 MPa and 12.0%, respectively,exhibiting comprehensive tensile mechanical properties with ultra-high strength and excellent plasticity. The ultra-high TYS of 412 MPa was mainly due to the strengthening from ultra-fine DRXed grains with segregation of solute atoms at grain boundaries. The strain hardening rate is increase slightly with increasing extrusion speed, which may be ascribed to the increasing mean DRXed grain size with rising extrusion speed. The higher strain hardening rate contributes to the higher EL of these AXM1104 samples extruded at higher ram speed. 展开更多
关键词 Mg-Al-Ca-Mn alloy Ultrafine grain Extrusion rate Grain boundary segregation MICROSTRUCTURE Ultrahigh strength
下载PDF
Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel 被引量:4
15
作者 Yushuo Li Yanwu Dong +3 位作者 Zhouhua Jiang Qingfei Tang Shuyang Du Zhiwen Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期324-334,共11页
The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the... The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures. 展开更多
关键词 rare earth hot deformation Mn18Cr18N steel non-metallic inclusions element segregation MICROHARDNESS
下载PDF
Microstructure,segregation and precipitate evolution in directionally solidified GH4742 superalloy 被引量:2
16
作者 Shulei Yang Shufeng Yang +3 位作者 Wei Liu Jingshe Li Jinguo Gao Yi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期939-948,共10页
The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing v... The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing various nickel-based superalloys,the primary dendrite spacing is significantly linearly correlated with G^(-1/2)V^(-1/4) at high cooling rates,where G and V are temperature gradient and drawing rate,respectively.As the cooling rate decreases,the primary dendrite spacing increases in a dispersive manner.The secondary dendrite arm spacing is significantly correlated with(GV)^(-0.4) for all cooling rate ranges.The degree of elemental segregation increases and then decreases as the cooling rate increases,which is due to the competition between solute counter-diffusion and dendrite tip subcooling.With increasing the solidification rate,the size of γ′,carbides,and non-metallic inclusions gradually decreases.The morphology of the γ′ precipitate changes from plume-like to cubic to spherical.The morphology of carbide changes from block to fine-strip then to Chinese-script.The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion.The inclusions are mainly composite inclusions,which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride.As the cooling rate increases,the number density of composite inclusions first increases and then decreases,which is closely related to the elemental segregation behavior. 展开更多
关键词 SUPERALLOYS MICROSTRUCTURE SEGREGATION precipitation inclusions
下载PDF
A Study on the Effect of Low Calcium Ultra-fine Fly Ash as a Partial Sustainable Supplementary Material to Cement in Self-compacting Concrete 被引量:2
17
作者 Adapala Sunny Suprakash Karthiyaini S 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期330-341,共12页
The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh sta... The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh state,as well as their compressive strength at various ages.Microstructure(SEM and XRD)of blended SCC systems were studied.Also,the thermogravimetry behavior of blended SCC specimens were researched.According to the evaluated results,incorporating up to 20%UFFA into fresh concrete improved its performance due to its engineered fine particle size and spherical geometry,both of which contribute to the enhancement of characteristics.Blends of 25%and 30%of UFFA show effect on the water-binder ratio and chemical enhancer dosage,resulting in a loss of homogeneity in fresh SCC systems.The reduced particle size,increased amorphous content,and increased surface area all contribute to the pozzolanic reactivity of the early and later ages,resulting in denser packing and thus an increase in compressive strength.The experimental results indicate that UFFA enhances the properties of SCC in both its fresh and hardened states,which can be attributed to the particles’fineness and their relative effect on SCC. 展开更多
关键词 ultra fine fly ash self-compacting concrete WORKABILITY SEGREGATION compressive strength microstructure TGA
下载PDF
Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion 被引量:2
18
作者 Jinshu Xie Zhi Zhang +6 位作者 Shujuan Liu Jinghuai Zhang Jun Wang Yuying He Liwei Lu Yunlei Jiao Ruizhi Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期82-91,共10页
Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial... Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial AZ31 alloy in extrudability,but also have superior mechanical properties,especially in terms of yield strength(YS).The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys.The high strength-ductility mainly comes from the formation of fine grains,nano-spaced submicron/nano precipitates,and weak texture.Moreover,it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C,significantly higher than that of AZ31 alloy(YS:45 MPa).The Zn/Ca solute segregation at grain boundaries,the improved heat resistance of matrix due to addition of RE,and the high melting points of strengthening particles(Mn,MgZn_(2),and Mg-Zn-RE/Mg-Zn-RE-Ca)are mainly responsible for the excellent high-temperature strength. 展开更多
关键词 magnesium alloys high-speed extrusion high strength high ductility solute segregation
下载PDF
Progress in weldability research of high entropy alloys 被引量:2
19
作者 刘爱国 王超 《China Welding》 CAS 2023年第1期53-62,共10页
High entropy alloys usually show good weldability.The weldability problems of high entropy alloys are segregation,cracks,and hardening or softening of weld,etc.When an Al_(x)CoCrFeNi alloy is welded,Al and Ni will seg... High entropy alloys usually show good weldability.The weldability problems of high entropy alloys are segregation,cracks,and hardening or softening of weld,etc.When an Al_(x)CoCrFeNi alloy is welded,Al and Ni will segregate to the interdendritic region in the weld,but the degree of segregation is less than that of the base metal.When an Al_(x)CoCrCu_(x)FeNi alloy or a CoCrCu_(x)FeNi alloy is welded,Cu tends to segregate to the interdendritic region in the weld.Increasing the cooling rate of the welding process,such as with laser welding,is conducive to reducing the segregation in the weld.The segregation in the weld and the heat affected zone,especially the segregation of Cu,will lead to the generation of hot cracks.Hot cracking is the main form of cracking in high entropy alloys joints.Welding will lead to changes in the hardness of the weld.The main factors affecting the hardness change are the grain sizes and the precipitations.With laser welding,if the base metal is cold rolled,the hardness of the weld will decrease.If the base metal is hot rolled and annealed or cast,the hardness of the weld will increase.With TIG welding,the hardness of the weld is usually lower than that of the base metal,unless the grain of the base metal is particularly coarse before welding.With friction stir welding,recrystallization and grain refinement occur in the stir zone,and the hardness of the stir zone will be significantly improved no matter the original base metal is cold rolled or cast. 展开更多
关键词 high entropy alloys WELDABILITY SEGREGATION CRACK HARDNESS
下载PDF
Underlying slip/twinning activities of Mg-xGd alloys investigated by modified lattice rotation analysis 被引量:1
20
作者 Biaobiao Yang Chenying Shi +7 位作者 Xianjue Ye Jianwei Teng Ruilin Lai Yujie Cui Dikai Guan Hongwei Cui Yunping Li Akihiko Chiba 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期998-1015,共18页
The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-co... The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-consuming,and that by SEM/EBSD cannot recognize the partial slip modes.These urge a more efficient and comprehensive approach to easily distinguish all potential slip modes occurred concurrently in alloy matrix.Here we report a modified lattice rotation analysis that can distinguish all slip systems and provide statistical results for slip activities in Mg alloy matrix.Using this method,the high ductility of Mg-Gd alloy ascribed to the enhanced non-basal slips,cross-slip,and postponed twinning activities by Gd addition is quantitatively clarified. 展开更多
关键词 Mg-Gd alloy Non-basal slips Postponed twinning Grain boundary segregation Modified lattice rotation analysis
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部