We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave loc...This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.展开更多
This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet ...This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW's dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the sub- band signal bandwidth can be regulated effectively by the transform's resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform's properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified.展开更多
High-pressure polymorphs of olivine and enstatite are major constituent minerals in the mantle transition zone (MTZ). The phase transformations of olivine and enstatite at pressure and temperature conditions corresp...High-pressure polymorphs of olivine and enstatite are major constituent minerals in the mantle transition zone (MTZ). The phase transformations of olivine and enstatite at pressure and temperature conditions corresponding to the lower part of the MTZ are import for understanding the nature of the 660 km seismic discontinuity. In this study, we determine phase transfor- mations of olivine (MgSi204) and enstatite (MgSiO3) systematiclly at pressures between 21.3 and 24.4 GPa and at a constant temperature of 1600~C. The most profound discrepancy between olivine and enstatite phase transformation is the occurency of perovskite. In the olivine system, the post-spinel transformation occures at 23.8 GPa, corresponding to a depth of 660 km. In contrast, perovskite appears at 〈23 GPa (640 km) in the enstatite splitting of the 660 km seismic discountinuity under eastern China. system. The -1 GPa gap could explain the uplifting and/orsplitting of the 660 km seismic discountinuity under eastern China.展开更多
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
文摘This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.
基金supported by the Innovation Fund for Small and Medium Technology-based Enterprise of China(No.12C26216106562)Shaanxi Province Education Department Science and Technology Research Plan(No.11JK0777)
文摘This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW's dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the sub- band signal bandwidth can be regulated effectively by the transform's resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform's properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified.
基金financially supported by the Sinoprobe-0801National Natural Science Foundation of China(Grant Nos.41002068&41174076)
文摘High-pressure polymorphs of olivine and enstatite are major constituent minerals in the mantle transition zone (MTZ). The phase transformations of olivine and enstatite at pressure and temperature conditions corresponding to the lower part of the MTZ are import for understanding the nature of the 660 km seismic discontinuity. In this study, we determine phase transfor- mations of olivine (MgSi204) and enstatite (MgSiO3) systematiclly at pressures between 21.3 and 24.4 GPa and at a constant temperature of 1600~C. The most profound discrepancy between olivine and enstatite phase transformation is the occurency of perovskite. In the olivine system, the post-spinel transformation occures at 23.8 GPa, corresponding to a depth of 660 km. In contrast, perovskite appears at 〈23 GPa (640 km) in the enstatite splitting of the 660 km seismic discountinuity under eastern China. system. The -1 GPa gap could explain the uplifting and/orsplitting of the 660 km seismic discountinuity under eastern China.