Mining induced pressures are strong and overburden failure areas are large in top coal caving longwall mining, which constrains high production and safety mining. By employing the combination of the full view borehole...Mining induced pressures are strong and overburden failure areas are large in top coal caving longwall mining, which constrains high production and safety mining. By employing the combination of the full view borehole photography technique and the seismic CT scanner technique, the deformation and failure of overlying strata of fully mechanized caving face in shallow coal seam were studied and the failure development of overburden was determined. Results show that the full view borehole photography can reveal the characteristics of strata, and the seismic CT scanner can reflect the characteristics of strata between the boreholes. The combined measurement technique can effectively determine the height of fractured and caved zones. The top end of the caved zone in Yangwangou coal mine employing the top coal caving longwall mining was at the depth of 171 m and fractured zone was at the depth of 106-110 m. The results provide a theoretic foundation for controlling the overburden strata in the shallow buried top coal caving panel.展开更多
基金provided by the National Natural Science Foundation of China(No.51674132)the State Key Research Development Program of China(No.2016YFC0801407-2)+3 种基金the Research Fund of The State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.SKLCRSM15KF04)Natural Science Foundation of Liaoning Province(No.2015020614)Liaoning BaiQianWan Talents Program(No.201575)the Research Fund of State and Local Joint Engineering Laboratory for Gas Drainage & Ground Control of Deep Mines(Henan Polytechnic University)(No.G201602)
文摘Mining induced pressures are strong and overburden failure areas are large in top coal caving longwall mining, which constrains high production and safety mining. By employing the combination of the full view borehole photography technique and the seismic CT scanner technique, the deformation and failure of overlying strata of fully mechanized caving face in shallow coal seam were studied and the failure development of overburden was determined. Results show that the full view borehole photography can reveal the characteristics of strata, and the seismic CT scanner can reflect the characteristics of strata between the boreholes. The combined measurement technique can effectively determine the height of fractured and caved zones. The top end of the caved zone in Yangwangou coal mine employing the top coal caving longwall mining was at the depth of 171 m and fractured zone was at the depth of 106-110 m. The results provide a theoretic foundation for controlling the overburden strata in the shallow buried top coal caving panel.