Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppresse...Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.展开更多
To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input...To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input motions, dynamic time-history analyses were carried out. In the analyses, we compared earth pressure on the front and back of the piles and deformation of the piles under different seismic forces with or without anchor cables. With the anchor cable present, the earth pressure on the back of the pile's free section increases, but that on the back of the pile's anchorage section decreases. Also, with anchor cables, the earth pressure on the front of the upper pile decreases, and that on the back of the lower pile decreases.展开更多
An original reinforced concrete(RC) column and four strengthened specimens, two with RC jackets and two with wing walls, were tested in this study. The original column specimen was designed to comply with older(pre-19...An original reinforced concrete(RC) column and four strengthened specimens, two with RC jackets and two with wing walls, were tested in this study. The original column specimen was designed to comply with older(pre-1999) design standards so that the usual detailing defi ciencies in existing school buildings in Taiwan could be simulated. Two different structural details were chosen to fabricate the full-scale specimens for each retrofi tting technique. The study confi rmed that either RC jacketing or the installation of wing walls with two different structural details can effectively improve the stiffness and strength of an existing column. RC jacketing shows a better improvement in energy dissipation and ductility when compared to the columns with wing walls installed. This is because the two RC jacketed columns experienced a fl exural failure, while a shear failure was found in the two columns with the wing walls installed, and thus led to a drastic decrease of the maximum lateral strengths and ductility. Since many factors may affect the installation of a post-installed anchor, it is better to use standard hooks to replace post-installed anchors in some specifi c points when using RC jacketing or installing wing walls.展开更多
The present study investigates the force transfer mechanisms for open hoop fiber reinforced plastic (FRP) strips attached at reinforced concrete (R/C) beams with or without anchorage. These open hoop FRP strips are ut...The present study investigates the force transfer mechanisms for open hoop fiber reinforced plastic (FRP) strips attached at reinforced concrete (R/C) beams with or without anchorage. These open hoop FRP strips are utilized in R/C beams that are in need of shear capacity upgrade. This type of retrofitting is necessary for R/C structures designed with less stringent seismic loading conditions than those currently required. For this purpose special unit beam concrete specimens were fabricated and were used to attach open hoop carbon (CFRP) or steel (SFRP) FRP strips with or without anchoring. A novel loading arrangement was utilized to apply the necessary forces to these unit beam specimens together with instrumentation capable of capturing the behaviour of these specimens up to failure. Studying in this way the transfer of forces from the open hoop FRP strips, it could be demonstrated that when this type of retrofitting was accompanied with a properly designed anchoring device, a significant increase in the bearing capacity of the tested specimens was observed. Moreover, the observed failure was that of the fracture of the FRP strips for all such specimens. The highest degree of FRP material exploitation was achieved in the specimen that utilizes a patented anchoring device together with two layers of SFRP strips. Debonding of the FRP strips or failure of the anchoring device results, as was to be expected, in relatively unsatisfactory FRP material exploitation.展开更多
基金financially supported by the National Key R&D Program of China(No.2018YFC1508601)the Fundamental Research Funds for the Central University(20822041B4038)
文摘Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.
文摘To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input motions, dynamic time-history analyses were carried out. In the analyses, we compared earth pressure on the front and back of the piles and deformation of the piles under different seismic forces with or without anchor cables. With the anchor cable present, the earth pressure on the back of the pile's free section increases, but that on the back of the pile's anchorage section decreases. Also, with anchor cables, the earth pressure on the front of the upper pile decreases, and that on the back of the lower pile decreases.
基金the fi nancial support for this study from the Architecture and Building Research Institute,Chinese Taipei,under Grant No.099301070000G1005
文摘An original reinforced concrete(RC) column and four strengthened specimens, two with RC jackets and two with wing walls, were tested in this study. The original column specimen was designed to comply with older(pre-1999) design standards so that the usual detailing defi ciencies in existing school buildings in Taiwan could be simulated. Two different structural details were chosen to fabricate the full-scale specimens for each retrofi tting technique. The study confi rmed that either RC jacketing or the installation of wing walls with two different structural details can effectively improve the stiffness and strength of an existing column. RC jacketing shows a better improvement in energy dissipation and ductility when compared to the columns with wing walls installed. This is because the two RC jacketed columns experienced a fl exural failure, while a shear failure was found in the two columns with the wing walls installed, and thus led to a drastic decrease of the maximum lateral strengths and ductility. Since many factors may affect the installation of a post-installed anchor, it is better to use standard hooks to replace post-installed anchors in some specifi c points when using RC jacketing or installing wing walls.
文摘The present study investigates the force transfer mechanisms for open hoop fiber reinforced plastic (FRP) strips attached at reinforced concrete (R/C) beams with or without anchorage. These open hoop FRP strips are utilized in R/C beams that are in need of shear capacity upgrade. This type of retrofitting is necessary for R/C structures designed with less stringent seismic loading conditions than those currently required. For this purpose special unit beam concrete specimens were fabricated and were used to attach open hoop carbon (CFRP) or steel (SFRP) FRP strips with or without anchoring. A novel loading arrangement was utilized to apply the necessary forces to these unit beam specimens together with instrumentation capable of capturing the behaviour of these specimens up to failure. Studying in this way the transfer of forces from the open hoop FRP strips, it could be demonstrated that when this type of retrofitting was accompanied with a properly designed anchoring device, a significant increase in the bearing capacity of the tested specimens was observed. Moreover, the observed failure was that of the fracture of the FRP strips for all such specimens. The highest degree of FRP material exploitation was achieved in the specimen that utilizes a patented anchoring device together with two layers of SFRP strips. Debonding of the FRP strips or failure of the anchoring device results, as was to be expected, in relatively unsatisfactory FRP material exploitation.