In this paper, we propose a novel seismic blind deconvolution approach based on the Spearman’s rho in the case of band-limited seismic data with a low dominant frequency and short data records. The Spearman’s rho is...In this paper, we propose a novel seismic blind deconvolution approach based on the Spearman’s rho in the case of band-limited seismic data with a low dominant frequency and short data records. The Spearman’s rho is a measure of the dependence between two continuous random variables without the influence of the marginal distributions, by which a new criterion for blind deconvolution is constructed. The optimization program for new criterion of blind deconvolution is performed by applying Neidell’s wavelet model to the inverse filter. The noise-free and noisy synthetic data, onshore seismic trace in the Ordos Basin, and offshore stacked section in the Bohai Bay Basin examples show good results of the method.展开更多
Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduct...Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduction zone to the south, is studied in order to i) identify its relationship with the mapped structure, ii)determine deformational mechanisms and iii) constrain the geometry of the fold and thrust belt in the lower crust. Through this, we aim to determine which are the structures that contribute to Andean construction, east of the Frontal Cordillera in Argentina and at the western Principal Cordillera in Chile. Data from a temporary local seismic network are reprocessed in order to achieve a precise location of hypocenters and, whenever possible, to build focal mechanisms. Results are interpreted and compared with previous seismic studies and structural models. Analyzed seismicity is grouped around the eastern front of Frontal Cordillera, with hypocenters mainly at depths of 25-40 km. Contrastingly, earthquakes in the Principal Cordillera to the west are located at the axial Andean sector and Chilean slope, with depths shallower than 15 km. Obtained focal mechanisms indicate mainly strike-slip displacements, left lateral at Frontal Cordillera and right lateral at Principal Cordillera. Based on these observations, new possible structural models are proposed, where seismogenic sources could be either associated with inherited basement structures from the Cuyania-Chilenia suture; or correspond to deep-blind thrusts linked with a deeper-than-previously-assumed decollement that could be shared between Frontal Cordillera and western Precordillera. This deeper decollement would coincide in turn with the one determined from receiver function analysis for the eastern Sierras Pampeanas in previous works, potentially implying a common decollement all through the fold and thrust belt configuration. Apart from this, a new interpretation of seismogenic structures in Principal Cordillera near the Argentina-Chile boundary is provided.展开更多
文摘In this paper, we propose a novel seismic blind deconvolution approach based on the Spearman’s rho in the case of band-limited seismic data with a low dominant frequency and short data records. The Spearman’s rho is a measure of the dependence between two continuous random variables without the influence of the marginal distributions, by which a new criterion for blind deconvolution is constructed. The optimization program for new criterion of blind deconvolution is performed by applying Neidell’s wavelet model to the inverse filter. The noise-free and noisy synthetic data, onshore seismic trace in the Ordos Basin, and offshore stacked section in the Bohai Bay Basin examples show good results of the method.
基金supported by"Proyecto Unidad Ejecutora IDEAN:Evolución geológica de los Andes y su impacto económico y ambiental"
文摘Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduction zone to the south, is studied in order to i) identify its relationship with the mapped structure, ii)determine deformational mechanisms and iii) constrain the geometry of the fold and thrust belt in the lower crust. Through this, we aim to determine which are the structures that contribute to Andean construction, east of the Frontal Cordillera in Argentina and at the western Principal Cordillera in Chile. Data from a temporary local seismic network are reprocessed in order to achieve a precise location of hypocenters and, whenever possible, to build focal mechanisms. Results are interpreted and compared with previous seismic studies and structural models. Analyzed seismicity is grouped around the eastern front of Frontal Cordillera, with hypocenters mainly at depths of 25-40 km. Contrastingly, earthquakes in the Principal Cordillera to the west are located at the axial Andean sector and Chilean slope, with depths shallower than 15 km. Obtained focal mechanisms indicate mainly strike-slip displacements, left lateral at Frontal Cordillera and right lateral at Principal Cordillera. Based on these observations, new possible structural models are proposed, where seismogenic sources could be either associated with inherited basement structures from the Cuyania-Chilenia suture; or correspond to deep-blind thrusts linked with a deeper-than-previously-assumed decollement that could be shared between Frontal Cordillera and western Precordillera. This deeper decollement would coincide in turn with the one determined from receiver function analysis for the eastern Sierras Pampeanas in previous works, potentially implying a common decollement all through the fold and thrust belt configuration. Apart from this, a new interpretation of seismogenic structures in Principal Cordillera near the Argentina-Chile boundary is provided.