期刊文献+
共找到2,855篇文章
< 1 2 143 >
每页显示 20 50 100
Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo
1
作者 Sonia Benkhellat Mohammed Kadri Abdelghani Seghir 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期609-623,共15页
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte... In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%. 展开更多
关键词 reinforced concrete silo perfectly matched layers soil-structure interaction granular material-structure interaction effective seismic input method damage index
下载PDF
Experimental study on the seismic response of braced reinforced concrete frame with irregular columns 被引量:6
2
作者 Xiao Jianzhuang Li Jie Chen Jun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期487-494,共8页
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K... A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China. 展开更多
关键词 seismic response reinforced concrete braced frame irregular columns
下载PDF
An expert system for diagnosing fire-caused damages to reinforced-concrete tunnel lining 被引量:1
3
作者 MANSOOR Yousif A. ZHANG Zhi-qiang 《Journal of Chongqing University》 CAS 2013年第1期16-26,共11页
During the last four decades, reinforced-concrete structure failures have been happening widely for many reasons, such as increased service loads, war accidents, fire, and durability problems. The economic losses due ... During the last four decades, reinforced-concrete structure failures have been happening widely for many reasons, such as increased service loads, war accidents, fire, and durability problems. The economic losses due to those failures are very high. An expert system is an interactive computer-based decision tool that uses both facts and heuristics to solve difficult problems based on knowledge acquired from experts. To realize these requirements, a logic programming visual basic language is used together with visual diagnosis. The expert system, Diagnosis of Fire-Caused Damages to Reinforced-Concrete Tunnel Lining (DFCDRCTL) was developed in this work for diagnosing the annual damages caused by fire. The program is used as an alternative of a human expert to make annual technical decisions in diagnosing fire damages at the second reinforced-concrete tunnel lining segment. It is concluded that the proposed DFCDRCTL expert system is easy to use, and is fast and helpful for engineers. 展开更多
关键词 expert system fire damage of reinforced concrete tunnel lining damage
下载PDF
DAMAGE LOCATION DUE TO CORROSION IN REINFORCED CONCRETE STRUCTURES 被引量:1
4
作者 WUJin ChengJi-xin LUMing-sheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第4期281-285,共5页
An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the p... An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal. 展开更多
关键词 钢筋混凝土结构 腐蚀状态 损伤定位 模态序列
下载PDF
Optimal seismic design of reinforced concrete structures under timehistory earthquake loads using an intelligent hybrid algorithm
5
作者 Sadjad Gharehbaghi Mohsen Khatibinia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期97-109,共13页
A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismi... A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads. 展开更多
关键词 optimal seismic design reinforced concrete frames earthquake loads particle swarm optimization intelligent regression model support vector machine
下载PDF
Seismic Damage to Owner-Built RC Frames in Charikot during the 2015 Nepal Earthquake Sequence
6
作者 Qu Zhe Wang Tao +2 位作者 Lin Xuchuan Zhang Haoyu Yang Yongqiang 《Earthquake Research in China》 CSCD 2018年第4期584-601,共18页
The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these b... The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these buildings were built by the owners with little governmental inspections regarding their structural design or constructional quality. Although they generally performed better than other structural systems such as stone-masonry houses,the RC frames sustained extensive damage ranging from cracking of infill to complete collapse. In particular,eight of the 72 inspected RC frames alongside an uphill street collapsed in different ways. In addition to the un-engineered nature of these RC frames,their collapse could also be attributed to multiple technical reasons including the effect of terrain, the pounding between adjacent buildings and the accumulative damage in the earthquake sequence. 展开更多
关键词 Nepal earthquake reinforced concrete frame MASONRY INFILL SLOPE POUNDING Accumulated damage
下载PDF
Failure Evaluation of Reinforced Concrete Beams Using Damage Mechanics and Classical Laminate Theory
7
作者 JoséMário Feitosa Lima Geraldo JoséBelmonte dos Santos Paulo Roberto Lopes Lima 《Journal of Architectural Environment & Structural Engineering Research》 2022年第4期1-9,共9页
The prediction of the behavior of reinforced concrete beams under bending is essential for the perfect design of these elements.Usually,the classical models do not incorporate the physical nonlinear behavior of concre... The prediction of the behavior of reinforced concrete beams under bending is essential for the perfect design of these elements.Usually,the classical models do not incorporate the physical nonlinear behavior of concrete under tension and compression,which can underestimate the deformations in the structural element under short and long-term loads.In the present work,a variational formulation based on the Finite Element Method is presented to predict the flexural behavior of reinforced concrete beams.The physical nonlinearity due cracking of concrete is considered by utilization of damage concept in the definition of constitutive models,and the lamination theory it is used in discretization of section cross of beams.In the layered approach,the reinforced concrete element is formulated as a laminated composite that consists of thin layers,of concrete or steel that has been modeled as elastic-perfectly plastic material.The comparison of numerical load-displacement results with experimental results found in the literature demonstrates a good approximation of the model and validates the application of the damage model in the Classical Laminate Theory to predict mechanical failure of reinforced concrete beam.The results obtained by the numerical model indicated a variation in the stress-strain behavior of each beam,while for under-reinforced beams,the compressive stresses did not reach the peak stress but the stress-strain behavior was observed in the nonlinear regime at failure,for the other beams,the concrete had reached its ultimate strain,and the beam’s neutral axis was close to the centroid of the cross-section. 展开更多
关键词 reinforced concrete damage mechanics Finite element method Laminate theory
下载PDF
Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams 被引量:7
8
作者 Wei-jun Cen Lang-sheng Wen +1 位作者 Zi-qi Zhang Kun Xiong 《Water Science and Engineering》 EI CAS CSCD 2016年第3期205-211,共7页
Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab ele... Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab elements, and a concrete random mesoscopic damage model was established. The seismic response of a 100-m high concrete face rockfill dam(CFRD), subjected to ground motion with different intensities, was simulated with the three-dimensional finite element method(FEM), with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes. The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes. With increasing earthquake intensity, the damaged zone and cracking zone on concrete slabs grow wider. During a 7.0-magnitude earthquake, the stress level of concrete slabs is low for the CFRD, and there is almost no damage or slight damage to the slabs. While during a 9.0-magnitude strong earthquake, the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake, peaking at approximately 26% and 5% at the end of the earthquake, respectively. The concrete random mesoscopic damage model can depict the entire process of sprouting, growing, connecting, and expanding of cracks on a concrete slab during earthquakes. 展开更多
关键词 concrete face ROCKFILL dam Random MESOSCOPIC damage model seismic response Dynamic damage to concrete SLAB Macrocracking Numerical simulation
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:4
9
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Earthquake simulation test of circular reinforced concrete bridge column under multidirectional seismic excitation 被引量:4
10
作者 Junichi Sakai Shigeki Unjoh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期103-110,共8页
Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced con... Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced concrete bridge columns in order to develop more advanced and reliable design procedures. To investigate such effects, a 1/4 scaled circular reinforced concrete bridge column specimen was tested under two horizontal and one vertical components of a strong motion that has long duration with several strong pulses. Damage progress of reinforced concrete columns subjected to strong excitation was evaluated from the test. The test results demonstrate that the lateral force response in the principal directions become smaller than computed flexural capacity due to the bilateral flexural loading effects, and that the lateral response is not significantly affected by the fluctuation of the axial force because the horizontal response and axial force barely reached the maximum simultaneously due to difference of the predominant natural periods between the vertical and the horizontal directions. Accuracy of fiber analyses is discussed using the test results. 展开更多
关键词 multidirectional seismic excitation reinforced concrete bridge columns shake table test nonlinear dynamic analyses fiber analysis
下载PDF
Seismic response of concrete gravity dam reinforced with FRP sheets on dam surface 被引量:3
11
作者 Hong ZHONG Na-li WANG Gao LIN 《Water Science and Engineering》 EI CAS CSCD 2013年第4期409-422,共14页
This paper aims at exploring the effects of anti-seismic reinforcement with the fiber-reinforced polymer (FRP) material bonded to the dam surface in dam engineering. Time-history analysis was performed to simulate t... This paper aims at exploring the effects of anti-seismic reinforcement with the fiber-reinforced polymer (FRP) material bonded to the dam surface in dam engineering. Time-history analysis was performed to simulate the seismic failure process of a gravity dam that was assumed to be reinforced at the locations of slope discontinuity at the downstream surface, part of the upstream face, and the dam heel. A damage model considering the influence of concrete heterogeneity was used to model the nonlinearity of concrete. A bond-slip model was applied to the interface between FRP and concrete, and the reinforcement mechanism was analyzed through the bond stress and the stress in FRP. The results of the crack pattern, displacement, and acceleration of the reinforced dam were compared with those of the original one. It is shown that FRP, as a reinforcement material, postpones the occurrence of cracks and slows the crack propagation, and that cracks emanating from the upstream surface and downstream surface are not connected, meaning that the reinforced dam can retain water-impounding function when subjected to the earthquake. Anti-seismic reinforcement with FRP is therefore beneficial to improving the seismic resistant capability of concrete dams. 展开更多
关键词 Key words: FRP sheet reinforcement of concrete gravity dam bond behavior seismic damagesimulation time history analysis
下载PDF
Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method 被引量:2
12
作者 Song Liangfeng Wu Mingxin +1 位作者 Wang Jinting Xu Yanjie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第3期617-626,共10页
This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects... This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers. 展开更多
关键词 arch dam outlet pier seismic damage reinforcement measure FE sub-model method
下载PDF
The role of soil in structure response of a building damaged by the 26 December 2018 earthquake in Italy
13
作者 Angela Fiamingo Melina Bosco Maria Rossella Massimino 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期937-953,共17页
Local soil conditions can significantly modify the seismic motion expected on the soil surface.In most cases,the indications concerning the influence of the underlying soil provided by the in-force European and Italia... Local soil conditions can significantly modify the seismic motion expected on the soil surface.In most cases,the indications concerning the influence of the underlying soil provided by the in-force European and Italian Building Codes underestimate the real seismic amplification effects.For this reason,numerical analyses of the local seismic response(LSR)have been encouraged to estimate the soil filtering effects.These analyses are generally performed in free-field conditions,ignoring the presence of superstructures and,therefore,the effects of dynamic soil-structure interaction(DSSI).Moreover,many studies on DSSI are characterised by a sophisticated modelling of the structure and an approximate modelling of the soil(using springs and dashpots at the foundation level);while others are characterised by a sophisticated modelling of the soil and an approximate modelling of the structure(considered as a simple linear elastic structure or a single degree of freedom system).This paper presents a set of finite element method(FEM)analyses on a fully-coupled soil-structure system for a reinforced concrete building located in Fleri(Catania,Italy).The building,designed for gravity loads only,was severely damaged during the 26 December 2018 earthquake.The soil was modelled considering an equivalent visco-elastic behaviour,while the structure was modelled assuming both the visco-elastic and visco-inelastic behaviours.The comparison made between the results of the FEM analyses and the observed damage is valuable. 展开更多
关键词 Local site response seismic risk reinforced concrete frame Fully-coupled soil-structure system Nonlinear dynamic analysis
下载PDF
Analytical study of performance evaluation for seismic retrofitting of reinforced concrete building using 3D dynamic nonlinear finite element analysis 被引量:1
14
作者 Yuichi Sato Shinichi Kajihara Yoshio Kaneko 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期291-302,共12页
This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls... This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofits is evaluated. The maximum drift of the first floor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confined, FuI1-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no significant differences were observed. 展开更多
关键词 reinforced concrete 1999 Taiwan Chi-Chi earthquake nonlinear finite element analysis seismic retrofit brick wall
下载PDF
Long-term Behavior of Fiber Reinforced Concrete Exposed to Sulfate Solution Cycling in Drying-immersion 被引量:2
15
作者 耿永娟 金祖权 +2 位作者 HOU Baorong ZHAO Tiejun GAO Song 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期875-881,共7页
The damage process and corrosion ion distribution in concrete, which was exposed to 60 and 170 drying-immersion cycles of sulfate solution, were systematically investigated. The effects of plain concrete, plain concre... The damage process and corrosion ion distribution in concrete, which was exposed to 60 and 170 drying-immersion cycles of sulfate solution, were systematically investigated. The effects of plain concrete, plain concrete mixed with 4 and 8 kg/m^3 modified PP fiber and high-performance concrete(HPC) mixed with 0.8 kg/m^3 fine PP fiber on the damage process were also studied. The experimental results showed that thenarditeinduced surface scaling, as well as gypsum-and ettringite-induced cracks, were the main degradation forms of concrete under attack of sulfate solution and drying–immersion cycles. The relative dynamic modulus of elasticity of concrete initially increased, then reached stability and finally decreased to failure. The sulfate diffusion coefficients of plain and HPC were 10^(-12) and 10^(-13) m^2/s, respectively. The concentration of sodium ion increased with depth, then maintained stability and finally decreased rapidly with concrete depth. The content of calcium ion on the concrete surface was 110%-150% of that in the interior of specimens. Although fiber worsened the surface scaling of concrete, better resistance capacity of sulfate ion penetration into concrete was observed in plain concrete with 4 kg/m^3 modified PP fiber and HPC. 展开更多
关键词 fiber reinforced concrete sulfateion damage diffusion coefficient drying-immersion cycles
下载PDF
Nonlinear seismic response analysis of reinforced concrete tube in tube structure 被引量:1
16
作者 WANG Hai-bo SHEN Pu-sheng 《Journal of Central South University of Technology》 2005年第z1期183-188,共6页
Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given... Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected. 展开更多
关键词 TUBE in TUBE structure of reinforced concrete seismic responses nonlinear analysis multi-vertical-lineelement model multi-spring element PSEUDO-DYNAMIC test
下载PDF
Seismic behavior of large-scale FRP–recycled aggregate concrete–steel columns with shear connectors 被引量:2
17
作者 Zeng Lan Li Lijuan +1 位作者 Yang Xianqian Liu Feng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期823-844,共22页
The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggr... The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance. 展开更多
关键词 recycled AGGREGATE concrete (RAC) fi ber-reinforced polymer (FRP) FRP–RAC–steel COLUMN (FRSC) shear connector seismic behavior
下载PDF
Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces 被引量:1
18
作者 Nasim S. Moghaddasi B Zhang Yunfeng Hu Xiaobin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期91-105,共15页
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete comp... This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand. 展开更多
关键词 BRACE composite confined concrete glass-fiber-reinforced polymer frame nonlinear analysis RETROFIT seismic
下载PDF
Seismic Performance of Steel Reinforced Ultra High-strength Concrete Columns 被引量:1
19
作者 贾金青 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2009年第3期216-222,230,共8页
The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of e... The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of experimental specimens ranged from 92.9 MPa to 108.1 MPa.The main experimental variables affecting seismic performance of specimens were axial load ratio and stirrup reinforcement ratio.The columns(λ=2.75) subjected to low cyclic reversed lateral loads failed mainly in the flexural-shear mode failure and columns(λ≤2.0) subjected to low cyclic reversed lateral loads failed mainly in the shear mode failure.Shear force-displacement hysteretic curves and skeleton curves were drawn.Coefficient of the specimen displacement ductility was calculated.Experimental results indicate that ductility decreases with axial pressure ratio increasing,and increases with stirrup reinforcement ratio increasing.Limit values of axial pressure ratio and minimum stirrup reinforcement ratio of columns are proposed to satisfy definite ductility requirement.The suggested values provide a reference for engineering application and for the amendment of the current Chinese design code of steel reinforced concrete composite structures. 展开更多
关键词 建筑结构 建筑物 抗震设计 混凝土结构
下载PDF
Seismic Enhancement of Existing Buildings by Means of Fiber Reinforced Concrete Diaphragms 被引量:1
20
作者 Alessandra Marini Giovanni Plizzari Cristina Zanotti 《Journal of Civil Engineering and Architecture》 2010年第3期6-14,共9页
关键词 钢筋混凝土 现有建筑物 纤维增强 板手 抗震 地震易损性 历史建筑 混凝土板
下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部