To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock f...A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the XRZ data are evidently achieved. All- optical clock recovery from XRZ data at 10 Gb/s is successfully demonstrated with the proposed XRZ-to- PRZ converter and a mode-locked SOA fiber laser. Furthermore, XRZ-to-RZ format conversion of 10 Gb/s is realized bv using the recovered clock as the control light of terahertz optical asymmetric demultiplexer (TOAD), which further proves that the proposed clock recovery scheme is applicable.展开更多
The Canglangpu Stage of Lower Cambrian Series is widely distributed along both sides of the Tanlu (Tancheng-Lujiang) Fault Zone in the Jiao-Liao-Xu-Huai regions. In the Liaodong Peninsula, the Canglangpu Stage consist...The Canglangpu Stage of Lower Cambrian Series is widely distributed along both sides of the Tanlu (Tancheng-Lujiang) Fault Zone in the Jiao-Liao-Xu-Huai regions. In the Liaodong Peninsula, the Canglangpu Stage consists of three formations, i.e. Gejiatun, Dalinzi and Jianchang formations in ascending order (lying on the eastern side of the Tanlu Fault Zone). The Dalinzi Formation, developing in a littoral Sabkha environment, is full of catastrophic event records of violent seism, such as liquefied muddy-sandy veins, hydroplastic folds, hydroplastic micro-faults (three forming an organic whole), liquefied crinkled deformations, liquefied breccia and sandy dikes. Based on such records, the seismic liquified sequence of argillaceous rocks in Sabkha is built up. In northern Jiangsu and Anhui provinces, however, there hardly observe seismic records in the Canglangpu Stage, which consists of Jinshanzhai and lower Gouhou and upper Gouhou formations (lying on the western side of the Tanlu Fault Zone). Even if the Gouhou Formation, developing in a lagoon-dry environment, is in the same climate zone as the Dalinzi Formation, and 4 depositional sequences have been identified in the Canglangpu Stage in Northern Jiangsu and Anhui provinces, however, in the same stage in the Liaodong Peninsula, there exist only 3 ones. Therefore, it is not supported by the above mentioned evidence (such as catastrophic events, sequences stratigraphy and lithologic correlation of formations) that the Canglangpu Stage in the Liaodong Peninsula came from northern Jiangsu and Anhui provinces through a long-distance, about hundreds kilometers, left-hand displacement of the Tanlu Fault in the Mesozoic era.展开更多
Formed on top of the Gulf of Cadiz, the Al Idrissi mud volcano is the shallowest and largest mud volcano in the El Arraiche mud volcano field of the northwestern Moroccan margin. The development and morphology of mud ...Formed on top of the Gulf of Cadiz, the Al Idrissi mud volcano is the shallowest and largest mud volcano in the El Arraiche mud volcano field of the northwestern Moroccan margin. The development and morphology of mud volcanoes from the El Arraiche mud volcanoes group have been studied at a large scale. However, the time interval related to their formation period still needs to be better understood. In this regard, we interpreted and analyzed the seismic facies from the 2D reflection data of the GEOMARGEN-1 campaign, which took place in 2011. The aim was to identify the seismic sequences and draw the Al Idrissi mud volcano system to determine the formation period of the Al Idriss mud volcano. And as a result, the Al Idrissi mud volcano system is made of both buried and superficial bicone and was identified along with the Upper Tortonian to Messinian-Upper Pliocene facies. As the initial mud volcano extrusive edifice, the buried bicone was formed in the Late-Messinian to Early-Pliocene period. However, the superficial bicone, as the final extrusive edifice, was included in the Late Pliocene. In this case, the timing interval between the buried and superficial bicone is equivalent to the Late-Messinian to Upper-Pliocene period. Therefore, the latter corresponds to the Al Idrissi mud volcano formation period.展开更多
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
基金This work was supported by the National Natural Science Foundation of China (No. 90401025)Key Project of MOE (No. 105036)
文摘A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the XRZ data are evidently achieved. All- optical clock recovery from XRZ data at 10 Gb/s is successfully demonstrated with the proposed XRZ-to- PRZ converter and a mode-locked SOA fiber laser. Furthermore, XRZ-to-RZ format conversion of 10 Gb/s is realized bv using the recovered clock as the control light of terahertz optical asymmetric demultiplexer (TOAD), which further proves that the proposed clock recovery scheme is applicable.
基金The work was jointly supported by the State Science and Technology Commission of China (Grant No. 95-special-04) the Geological Bureau of Survey and CAGS (Grant Nos. DKD2001007 and DKD2001010).
文摘The Canglangpu Stage of Lower Cambrian Series is widely distributed along both sides of the Tanlu (Tancheng-Lujiang) Fault Zone in the Jiao-Liao-Xu-Huai regions. In the Liaodong Peninsula, the Canglangpu Stage consists of three formations, i.e. Gejiatun, Dalinzi and Jianchang formations in ascending order (lying on the eastern side of the Tanlu Fault Zone). The Dalinzi Formation, developing in a littoral Sabkha environment, is full of catastrophic event records of violent seism, such as liquefied muddy-sandy veins, hydroplastic folds, hydroplastic micro-faults (three forming an organic whole), liquefied crinkled deformations, liquefied breccia and sandy dikes. Based on such records, the seismic liquified sequence of argillaceous rocks in Sabkha is built up. In northern Jiangsu and Anhui provinces, however, there hardly observe seismic records in the Canglangpu Stage, which consists of Jinshanzhai and lower Gouhou and upper Gouhou formations (lying on the western side of the Tanlu Fault Zone). Even if the Gouhou Formation, developing in a lagoon-dry environment, is in the same climate zone as the Dalinzi Formation, and 4 depositional sequences have been identified in the Canglangpu Stage in Northern Jiangsu and Anhui provinces, however, in the same stage in the Liaodong Peninsula, there exist only 3 ones. Therefore, it is not supported by the above mentioned evidence (such as catastrophic events, sequences stratigraphy and lithologic correlation of formations) that the Canglangpu Stage in the Liaodong Peninsula came from northern Jiangsu and Anhui provinces through a long-distance, about hundreds kilometers, left-hand displacement of the Tanlu Fault in the Mesozoic era.
文摘Formed on top of the Gulf of Cadiz, the Al Idrissi mud volcano is the shallowest and largest mud volcano in the El Arraiche mud volcano field of the northwestern Moroccan margin. The development and morphology of mud volcanoes from the El Arraiche mud volcanoes group have been studied at a large scale. However, the time interval related to their formation period still needs to be better understood. In this regard, we interpreted and analyzed the seismic facies from the 2D reflection data of the GEOMARGEN-1 campaign, which took place in 2011. The aim was to identify the seismic sequences and draw the Al Idrissi mud volcano system to determine the formation period of the Al Idriss mud volcano. And as a result, the Al Idrissi mud volcano system is made of both buried and superficial bicone and was identified along with the Upper Tortonian to Messinian-Upper Pliocene facies. As the initial mud volcano extrusive edifice, the buried bicone was formed in the Late-Messinian to Early-Pliocene period. However, the superficial bicone, as the final extrusive edifice, was included in the Late Pliocene. In this case, the timing interval between the buried and superficial bicone is equivalent to the Late-Messinian to Upper-Pliocene period. Therefore, the latter corresponds to the Al Idrissi mud volcano formation period.