期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Time history of seismic earth pressure response from gravity retaining wall based on energy dissipation 被引量:1
1
作者 QU Hong-lue DENG Yuan-yuan +2 位作者 GAO Ya-nan HUANG Xue ZHANG Zhe 《Journal of Mountain Science》 SCIE CSCD 2022年第2期578-590,共13页
The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave prop... The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history. 展开更多
关键词 Energy dissipation Time history of seismic earth pressure response Slip surface curve Gravity retaining wall Shaking table test
下载PDF
Optimal Vibration Control of Adjacent Building Structures Interconnected by Viscoelastic Dampers
2
作者 Ming-Yi Liu An-Pei Wang Ming-Yi Chiu 《Journal of Civil Engineering and Architecture》 2017年第5期468-476,共9页
The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analyt... The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analytical model including the system model formulation, complex modal analysis and seismic time history analysis is presented for this purpose. A numerical example is also provided to illustrate the analytical model. The complex modal analysis is conducted to determine the optimal damping ratio, the optimal damper stiffness and the optimal damper damping of the viscoelastic dampers for each mode of the system. For the damper stiffness and damping with optimal values, the responses can be categorized into underdamped and critically damped vibrations. Furthermore, compared to the viscous dampers with only the energy dissipation mechanism, the viscoelastic dampers with both the energy dissipation and redistribution mechanisms are more effective for increasing the damping ratio of the system. The seismic time history analysis is conducted to assess the effectiveness of the viscoelastic dampers for vibration control. Based on the optimal damping ratio, the optimal damper stiffness, the optimal damper damping of the viscoelastic dampers for a certain mode of the system, and the viscoelastic dampers can be used to effectively suppress the root-mean-square responses as well as the peak responses of the two adjacent buildings. 展开更多
关键词 Adjacent building structure viscoelastic damper complex modal analysis seismic time history analysis.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部