In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and ef...In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and efficient mining,the SUMMIT-II EX explosion-proof seismic slot wave instrument,produced by German DMT Company,was used to detect the underground channel wave with the help of transmission method,reflection method and transflective method.Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave,such as its great dispersion,abundant geology information,strong anti-interference ability and long-distance detecting.The experimental results showed that:(1)Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80%generally;(2)The faults,goafs and collapse columns could be detected and predicted accurately;(3)Experimental detection of gas enrichment areas,stress concentration regions and water inrush risk zone has been collated;(4)A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built,valuable and innovative achievements have been got.Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey.It had significant scientific value and application prospect under complex coal seam conditions.展开更多
The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this stu...The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.展开更多
In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the w...In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the water structure with high horizontal resolution,which compensates for the deficiencies of CTD data.However,conventional inversion methods are modeldriven,such as constrained sparse spike inversion(CSSI)and full waveform inversion(FWI),and typically require prior deterministic mapping operators.In this paper,we propose a novel inversion method based on a convolutional neural network(CNN),which is purely data-driven.To solve the problem of multiple solutions,we use stepwise regression to select the optimal attributes and their combination and take two-dimensional images of the selected attributes as input data.To prevent vanishing gradients,we use the rectified linear unit(ReLU)function as the activation function of the hidden layer.Moreover,the Adam and mini-batch algorithms are combined to improve stability and efficiency.The inversion results of field data indicate that the proposed method is a robust tool for accurately predicting oceanic parameters.展开更多
The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and ig...The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and igneous geology were summarized.Because 3D seismic resolution and interpretation technology are enhanced surprisingly。展开更多
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel...High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.展开更多
In the recent years,CNPC has examined and approved more than 600 items of gadgets for extensive application.The approved projects inc-lude both single item of advanced and applicable technology and a number of items o...In the recent years,CNPC has examined and approved more than 600 items of gadgets for extensive application.The approved projects inc-lude both single item of advanced and applicable technology and a number of items of supporting technology which are broght together in one area to solve the regional problems and boost the production capacity.As the economic reform is making progress,,theI mandatory planned system will be gradually replaced by the new guiding planned managerial system.展开更多
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.41130419).
文摘In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and efficient mining,the SUMMIT-II EX explosion-proof seismic slot wave instrument,produced by German DMT Company,was used to detect the underground channel wave with the help of transmission method,reflection method and transflective method.Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave,such as its great dispersion,abundant geology information,strong anti-interference ability and long-distance detecting.The experimental results showed that:(1)Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80%generally;(2)The faults,goafs and collapse columns could be detected and predicted accurately;(3)Experimental detection of gas enrichment areas,stress concentration regions and water inrush risk zone has been collated;(4)A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built,valuable and innovative achievements have been got.Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey.It had significant scientific value and application prospect under complex coal seam conditions.
基金funded by the National Key Research and Development Program Subject(No.2018YFC0807804)。
文摘The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.
基金This research is jointly funded by the National Key Research and Development Program of China(No.2017 YFC0307401)the National Natural Science Foundation of China(No.41230318)+1 种基金the Fundamental Research Funds for the Central Universities(No.201964017)and the National Science and Technology Major Project of China(No.2016ZX05024-001-002).
文摘In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the water structure with high horizontal resolution,which compensates for the deficiencies of CTD data.However,conventional inversion methods are modeldriven,such as constrained sparse spike inversion(CSSI)and full waveform inversion(FWI),and typically require prior deterministic mapping operators.In this paper,we propose a novel inversion method based on a convolutional neural network(CNN),which is purely data-driven.To solve the problem of multiple solutions,we use stepwise regression to select the optimal attributes and their combination and take two-dimensional images of the selected attributes as input data.To prevent vanishing gradients,we use the rectified linear unit(ReLU)function as the activation function of the hidden layer.Moreover,the Adam and mini-batch algorithms are combined to improve stability and efficiency.The inversion results of field data indicate that the proposed method is a robust tool for accurately predicting oceanic parameters.
文摘The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and igneous geology were summarized.Because 3D seismic resolution and interpretation technology are enhanced surprisingly。
文摘High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.
文摘In the recent years,CNPC has examined and approved more than 600 items of gadgets for extensive application.The approved projects inc-lude both single item of advanced and applicable technology and a number of items of supporting technology which are broght together in one area to solve the regional problems and boost the production capacity.As the economic reform is making progress,,theI mandatory planned system will be gradually replaced by the new guiding planned managerial system.