期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Seismic protection of frame structures via semi-active control:modeling and implementation issues 被引量:1
1
作者 Vincenzo Gattulli Marco Lepidi Francesco Potenza 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第4期627-645,共19页
Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces w... Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized. 展开更多
关键词 seismic protection flame structures semi-active control magnetorheological damper
下载PDF
Vertical seismic absorber utilizing inertance and negative stiffness implemented with gas springs
2
作者 Kalogerakou M Paradeisiotis A Antoniadis I 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期225-241,共17页
A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an... A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an inerter to form a stiff dynamic absorber(SDA)for vertical seismic protection of structures with base isolation.The SDA is optimized to minimize vertical accelerations while ensuring static structural integrity,excellent damping performance and containment of relative displacements.The introduction of gas springs in place of conventional linear springs addresses important practical limitations through features of non-linearity and industrial grade manufacturing.The proposed implementation is dimensioned for a 50-ton structure and evaluated numerically for 25 actual earthquake records,in comparison with a linear SDA model and an equivalent conventional damper(CD).Individual and averaged results of acceleration and displacement time histories demonstrate vastly superior response compared to CD regarding induced accelerations for similar displacements.Performance equivalency with the linear SDA model indicates the stability of the gas spring implementation while guaranteeing predictability,tested endurance,proper tolerances,and off-axis motion resistance without requiring additional guiding components,as opposed to conventional springs.These features render the proposed implementation a promising solution for the realization of NSEs in seismic protection. 展开更多
关键词 negative stiffness gas springs vertical seismic protection KDamper inerter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部