Performance test of a high precise accelerometer or an inertial sensor on the ground is inevitably limited by the seismic noise. A torsion pendulum has been used to investigate the performances of an electrostatic acc...Performance test of a high precise accelerometer or an inertial sensor on the ground is inevitably limited by the seismic noise. A torsion pendulum has been used to investigate the performances of an electrostatic accelerometer, where the test mass is suspended by a fiber to compensate for its weight, and this scheme demonstrates an advantage, compared with the high-voltage levitation scheme, in which the effect of the seismic noise can be suppressed for a few orders of magnitude in low frequencies. In this work, the capacitive electrode cage is proposed to be suspended by another pendulum, and theoretical analysis shows that the effects of the seismic noise can be further suppressed for more than one order by suspending the electrode cage.展开更多
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil...An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.展开更多
A new type of seismic intensity meter based on MEMS accelerometer is introduced. It employs STM32FI07 as the data processing core and detects the changes of acceleration with triaxial MEMS LIS344ALH and uses ADS1248 f...A new type of seismic intensity meter based on MEMS accelerometer is introduced. It employs STM32FI07 as the data processing core and detects the changes of acceleration with triaxial MEMS LIS344ALH and uses ADS1248 for 24 bit data sampling. The test on vibration table shows that the linearity of the meter is δL = ± 1.4% , and the sensitivity is Kc = 0.9671V/g with zero deviation of 0.0043 g. The seismic intensity meter has the advantages of simple structure and stable performance and it is appropriate for intensive layout on a large scale.展开更多
Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo...Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.展开更多
The use of in-seam waves for void detection in mines requires the capability of capturing high frequency signals over large distances. For instance, the Airy phase of Love waves which are used for void detection in co...The use of in-seam waves for void detection in mines requires the capability of capturing high frequency signals over large distances. For instance, the Airy phase of Love waves which are used for void detection in coal mines ranges from several hundred to over one thousand Hertz and the expected travel distance of these signals is at least 90 m (equivalent to a detection distance of 45 m) for the technique to be considered practical. In order to obtain high quality and broadband signals, sensors are conventionally grouted at the bottom of boreholes so that the attenuation due to the fractured surface is minimized and the coupling effect is improved. However, to be economically feasible, the expensive and high sensitive sensors must be retrievable so that they can be used repeatedly at the same or other locations. Because of these concerns, a retrievable sensor installation technique was developed. This paper provides a detailed review of the technique as well as a brief discussion of its applications. The technique is simple and reliable for both installation and retrieval operations and can be used for boreholes oriented in any directions. The technique has been demonstrated in over 200 sensor installation/retrieval operations under various borebole conditions, including bituminous coal, anthracite coal, shale, sandstone and trona. With this technique, we were able to detect the high frequency signals required for our projects. For instance, the signals used at a trona mine for void detection have a typical frequency of 5 kHz with the travel distance of 150-200 m. The results of these operations have shown that sensors installed in the prescribed manner exhibit predictable, consistent, and repeatable performance. The technique also provides an economical and reliable means for many other field seismic monitoring applications where high quality and broadband signals are essential, such as microseismic monitoring and geotomography studies.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11235004
文摘Performance test of a high precise accelerometer or an inertial sensor on the ground is inevitably limited by the seismic noise. A torsion pendulum has been used to investigate the performances of an electrostatic accelerometer, where the test mass is suspended by a fiber to compensate for its weight, and this scheme demonstrates an advantage, compared with the high-voltage levitation scheme, in which the effect of the seismic noise can be suppressed for a few orders of magnitude in low frequencies. In this work, the capacitive electrode cage is proposed to be suspended by another pendulum, and theoretical analysis shows that the effects of the seismic noise can be further suppressed for more than one order by suspending the electrode cage.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735014,61327012,and 61275088)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.08JZ58)the Northwest University Graduate Innovation and Creativity Funds,China(Grant No.YZZ17088)
文摘An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.
基金supported by the Director of Foundation of the Institute of Seismology,China Earthquake Administration(IS201016030)
文摘A new type of seismic intensity meter based on MEMS accelerometer is introduced. It employs STM32FI07 as the data processing core and detects the changes of acceleration with triaxial MEMS LIS344ALH and uses ADS1248 for 24 bit data sampling. The test on vibration table shows that the linearity of the meter is δL = ± 1.4% , and the sensitivity is Kc = 0.9671V/g with zero deviation of 0.0043 g. The seismic intensity meter has the advantages of simple structure and stable performance and it is appropriate for intensive layout on a large scale.
基金National Science Foundation,Grant number CMS-9900338
文摘Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.
基金Supported by the Mine Safety and Health Administration (MSHA) Project in US (B2532532)
文摘The use of in-seam waves for void detection in mines requires the capability of capturing high frequency signals over large distances. For instance, the Airy phase of Love waves which are used for void detection in coal mines ranges from several hundred to over one thousand Hertz and the expected travel distance of these signals is at least 90 m (equivalent to a detection distance of 45 m) for the technique to be considered practical. In order to obtain high quality and broadband signals, sensors are conventionally grouted at the bottom of boreholes so that the attenuation due to the fractured surface is minimized and the coupling effect is improved. However, to be economically feasible, the expensive and high sensitive sensors must be retrievable so that they can be used repeatedly at the same or other locations. Because of these concerns, a retrievable sensor installation technique was developed. This paper provides a detailed review of the technique as well as a brief discussion of its applications. The technique is simple and reliable for both installation and retrieval operations and can be used for boreholes oriented in any directions. The technique has been demonstrated in over 200 sensor installation/retrieval operations under various borebole conditions, including bituminous coal, anthracite coal, shale, sandstone and trona. With this technique, we were able to detect the high frequency signals required for our projects. For instance, the signals used at a trona mine for void detection have a typical frequency of 5 kHz with the travel distance of 150-200 m. The results of these operations have shown that sensors installed in the prescribed manner exhibit predictable, consistent, and repeatable performance. The technique also provides an economical and reliable means for many other field seismic monitoring applications where high quality and broadband signals are essential, such as microseismic monitoring and geotomography studies.