This papcr presents a comparison between the Chinese Code GB50011-2001 and the International Standard ISO3010:2001(E),emphasizing the similarities and differences related to design requirements,seismic actions and ana...This papcr presents a comparison between the Chinese Code GB50011-2001 and the International Standard ISO3010:2001(E),emphasizing the similarities and differences related to design requirements,seismic actions and analytical approaches.Similarities include:earthquake return period,conceptual design,site classification,structural strength and ductility requirements,deformation limits,response spectra,seismic analysis procedures,isolation and energy dissipation, and nonstructural elements.Differences exist in the following areas:seismic levels,earthquake loading,mode damping factors and structural control.展开更多
It is of great significance to make comparative analyses of seismic fortification criteria at home and abroad for improving the anti-seismic capability of electrical equipment and revising the relevant national standa...It is of great significance to make comparative analyses of seismic fortification criteria at home and abroad for improving the anti-seismic capability of electrical equipment and revising the relevant national standards.A brief overview of American,Japanese,IEC standards and Chinese seismic design codes for electrical equipment is presented.Differences between these seismic fortification standards of electrical equipment are compared and analyzed in respect of the goal and level of seismic fortification and the seismic design spectrum.The advantages and disadvantages of Chinese standards are pointed out.Through learning from foreign experience on the determination of seismic fortification standards,recommendations are made for the improvement and revision of Chinese seismic fortification standards for electrical equipment.展开更多
In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addit...In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addition to crustal earthquakes provided by catalogues, recent paleoseismological and neotectonic investigations have permitted to consider events which occurred during the last 400 years.Four seismogenic sources that could cause damages to the studied site corresponding to Precordillera,Western Sierras Pampeanas, Basement of the Cuyana Basin and Cordillera Principal were identified.Based on the evaluation of the contribution of these sources,maximum moment magnitudes above 7.5(Mw) are expected.High values of SA(spectral acceleration)(0.2 and 1 s periods) and PGA(peak ground acceleration) were found in the city of San Juan, which suggests that it is located in a zone of high seismic hazard.Finally, the obtained SA spectra were compared with the seismic-resistant construction standards of Argentina INPRES-CIRSOC 103 [1]. Results suggest that for the city of San Juan and for a return period of475 years, it covers the seismic requirements of the structures.展开更多
文摘This papcr presents a comparison between the Chinese Code GB50011-2001 and the International Standard ISO3010:2001(E),emphasizing the similarities and differences related to design requirements,seismic actions and analytical approaches.Similarities include:earthquake return period,conceptual design,site classification,structural strength and ductility requirements,deformation limits,response spectra,seismic analysis procedures,isolation and energy dissipation, and nonstructural elements.Differences exist in the following areas:seismic levels,earthquake loading,mode damping factors and structural control.
基金funded by the special project of Spark Program of Earthquake Sciences (Serial number:XH12063)
文摘It is of great significance to make comparative analyses of seismic fortification criteria at home and abroad for improving the anti-seismic capability of electrical equipment and revising the relevant national standards.A brief overview of American,Japanese,IEC standards and Chinese seismic design codes for electrical equipment is presented.Differences between these seismic fortification standards of electrical equipment are compared and analyzed in respect of the goal and level of seismic fortification and the seismic design spectrum.The advantages and disadvantages of Chinese standards are pointed out.Through learning from foreign experience on the determination of seismic fortification standards,recommendations are made for the improvement and revision of Chinese seismic fortification standards for electrical equipment.
文摘In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addition to crustal earthquakes provided by catalogues, recent paleoseismological and neotectonic investigations have permitted to consider events which occurred during the last 400 years.Four seismogenic sources that could cause damages to the studied site corresponding to Precordillera,Western Sierras Pampeanas, Basement of the Cuyana Basin and Cordillera Principal were identified.Based on the evaluation of the contribution of these sources,maximum moment magnitudes above 7.5(Mw) are expected.High values of SA(spectral acceleration)(0.2 and 1 s periods) and PGA(peak ground acceleration) were found in the city of San Juan, which suggests that it is located in a zone of high seismic hazard.Finally, the obtained SA spectra were compared with the seismic-resistant construction standards of Argentina INPRES-CIRSOC 103 [1]. Results suggest that for the city of San Juan and for a return period of475 years, it covers the seismic requirements of the structures.