The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a nume...The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. .展开更多
Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders t...Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.展开更多
Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wave...Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, Cauchy criterion, and the modified Cauchy criterion, to phase spectrum estimation of the seismic wavelet, obtaining an equivalent effect to the kurtosis criterion. Through numerical experiments, we find that when the reflectivity is not a sparse sequence, the estimated phase spectrum of the seismic wavelet based on the criterion function will deviate from the true value. In order to eliminate the influence of non-sparse reflectivity series in a single trace, we apply the method to the multi-trace seismogram, improving the accuracy of seismic wavelet phase spectrum estimation.展开更多
On the assumption that the wavelet is causal and nonminimum phase, an autoregressive moving average (ARMA) model is introduced to fit the seismic trace. Seismic wavelet extraction is converted to parameters estimati...On the assumption that the wavelet is causal and nonminimum phase, an autoregressive moving average (ARMA) model is introduced to fit the seismic trace. Seismic wavelet extraction is converted to parameters estimation of the ARMA model. Singular value decomposition (SVD) of an appropriate matrix formed by autocorrelation is exploited to determine the autoregressive (AR) order, and the cumulant-based SVD-TLS (total least squares) approach is proposed to obtain the AR parameters. The author proposes a new moving average (MA) model order determination method via combining the information theoretic criteria method and higher-order cumulant method. The cumulant approach is used to achieve the MA parameters. Theoretical analysis and numerical simulations demonstrate the feasibility of the wavelet extraction approach.展开更多
Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are...Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.展开更多
On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inver...On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.展开更多
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave loc...This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.展开更多
This paper presents a wavelet-based approach for estimating the response of the base-isolated structure under seismic ground motions. The seismic ground motion record is expressed as the multi-scale wavelet coefficien...This paper presents a wavelet-based approach for estimating the response of the base-isolated structure under seismic ground motions. The seismic ground motion record is expressed as the multi-scale wavelet coefficients which presents the time frequency characteristics of the seismic excitation. The wavelet domain governing differential equation between the wavelet coefficients of the excitation and response is derived. Numerical study on a one-storey base isolated structure is performed. The result shows that the wavelet based response computation method is of high precision.展开更多
The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has b...The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.展开更多
Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base functi...Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base function to study the change characteristics of Gauss linear frequency modulation wavelet transform with difference wavelet and signal parameters, analyzes the error origin of seismic phases identification on the basis of Gauss linear frequency modulation wavelet transform, puts forward a kind of new method identifying gradual change style seismic phases with background noise which is called fixed scale wavelet transform ratio, and presents application examples about simulation digital signal and actual seismic phases recording onsets identification.展开更多
The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth...The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.展开更多
文摘The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. .
基金supported by National 863 Program of China(Grant No.2006AA09A101-0102)
文摘Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.
基金supported by the Major Basic Research Development Program of China (973 Project No. 2007CB209608)
文摘Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, Cauchy criterion, and the modified Cauchy criterion, to phase spectrum estimation of the seismic wavelet, obtaining an equivalent effect to the kurtosis criterion. Through numerical experiments, we find that when the reflectivity is not a sparse sequence, the estimated phase spectrum of the seismic wavelet based on the criterion function will deviate from the true value. In order to eliminate the influence of non-sparse reflectivity series in a single trace, we apply the method to the multi-trace seismogram, improving the accuracy of seismic wavelet phase spectrum estimation.
基金supported by the National High Technology Research and Development Program of China (863 Program, No.2007AA09Z301)the Graduate Innovation Fund of China University of Petroleum and National Natural Science Foundation of China (40974072)
文摘On the assumption that the wavelet is causal and nonminimum phase, an autoregressive moving average (ARMA) model is introduced to fit the seismic trace. Seismic wavelet extraction is converted to parameters estimation of the ARMA model. Singular value decomposition (SVD) of an appropriate matrix formed by autocorrelation is exploited to determine the autoregressive (AR) order, and the cumulant-based SVD-TLS (total least squares) approach is proposed to obtain the AR parameters. The author proposes a new moving average (MA) model order determination method via combining the information theoretic criteria method and higher-order cumulant method. The cumulant approach is used to achieve the MA parameters. Theoretical analysis and numerical simulations demonstrate the feasibility of the wavelet extraction approach.
基金supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ034)the National Natural Science Foundation of China(No.41676039)the National Science and Technology Major Project(2017ZX05049002-005)。
文摘Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.
基金supported by National Key Basic Research Development Program (Grant No. 2007CB209600)National Major Science and Technology Program (Grant No. 2008ZX05010-002)
文摘On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.
文摘This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.
文摘This paper presents a wavelet-based approach for estimating the response of the base-isolated structure under seismic ground motions. The seismic ground motion record is expressed as the multi-scale wavelet coefficients which presents the time frequency characteristics of the seismic excitation. The wavelet domain governing differential equation between the wavelet coefficients of the excitation and response is derived. Numerical study on a one-storey base isolated structure is performed. The result shows that the wavelet based response computation method is of high precision.
文摘The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.
基金State Natural Science Foundation of China (40074007) Science and Technology Key Project during the Ten-Year Plan(2001BA601B02-03-06) and the Natural Science Foundation of Shandong Province (Y2000E08).
文摘Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base function to study the change characteristics of Gauss linear frequency modulation wavelet transform with difference wavelet and signal parameters, analyzes the error origin of seismic phases identification on the basis of Gauss linear frequency modulation wavelet transform, puts forward a kind of new method identifying gradual change style seismic phases with background noise which is called fixed scale wavelet transform ratio, and presents application examples about simulation digital signal and actual seismic phases recording onsets identification.
基金supported by the National Natural Science Foundation of China(No.41574130,41874143 and 41374134)the National Science and Technology Major Project of China(No.2016ZX05014-001-009)the Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2016TD0023)
文摘The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.