期刊文献+
共找到560篇文章
< 1 2 28 >
每页显示 20 50 100
Physical Modeling of Landslide Mechanism in Oblique Thick-Bedded Rock Slope: A Case Study 被引量:5
1
作者 FENG Zhen YIN Yueping +1 位作者 LI Bin YAN Jinkai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期1129-1136,共8页
The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to invest... The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks-key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable-unstable transition exists. 展开更多
关键词 CENTRIFUGE key block driving blocks karstification belt apparent dip slide oblique thick-bedded rock slope
下载PDF
Large-scale Rock Landslide Slip Surface Location Analysis and Strength Parameters Evaluation 被引量:2
2
作者 YOU Min NIE Dexin 《Journal of Mountain Science》 SCIE CSCD 2011年第2期261-269,共9页
Large-scale rock landslides have huge impacts on various large-scale rock engineering and project operations. They are also important aspects evaluating geological disasters. In the initial evaluations on the stabilit... Large-scale rock landslides have huge impacts on various large-scale rock engineering and project operations. They are also important aspects evaluating geological disasters. In the initial evaluations on the stability of large-scale rock landslides, in most cases, it is difficult to conduct evaluation or to have accurate evaluations because most of large-scale rock landslides are huge in size, high in slopes, and located in the canyon of mountains, which makes the exploration very difficult and thus hard to get credible data on slip surface form, location, depth and strength. This paper describes the Badi landslide happened along the Lancang River, and systematically introduces methods to analyze and verify large-scale slip surface form using terrain conditions surrounding the large-scale landslide, shape of the slide walls, and development patterns of streams and gully. This paper also introduces ways to obtain strength parameters of slip surface with the soil in the slide zone by using the principles of stress state, principles of gravity compaction, structure regeneration and strength regeneration. It is confirmed that analyzed results to the slip surface are basically consistent with the exploration results. The methods introduced here have been successfully applied to evaluate the stability of Badi large-scale rock landslide and have been applied in engineering practices. 展开更多
关键词 rock landslide Sliding face Gravity compaction
下载PDF
RADON ANOMALY AND ROCK SLIDE PREDICTION
3
作者 伍祥生 《Nuclear Science and Techniques》 SCIE CAS CSCD 1993年第3期186-188,共3页
In order to explore whether radon anomaly could be considered the precursor of rock slide, the forming mechanism of the radon anomaly is qualitatively analysed according to the relationship between rock rupture and ra... In order to explore whether radon anomaly could be considered the precursor of rock slide, the forming mechanism of the radon anomaly is qualitatively analysed according to the relationship between rock rupture and radon content. It is indicated that the rock microfracture may be one of the reasons leading to the radon anomaly before rock slide, suggesting that the CR-39 solid state nuclear track detector could be used to monitor the radon concentration in the region of the slide. The information may then be used to predict rock slide. 展开更多
关键词 RADON ANOMALY rock slide PREDICTION ALPHA TRACK method
下载PDF
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
4
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 Kinematic analysis Block theory Planar sliding Lateral limit angle rock slope
下载PDF
Stability analysis of intermittently jointed rock slopes based on the stepped failure mode
5
作者 LI Dejian FU Junwen +4 位作者 LI Hekai CHENG Xiao ZHAO Lianheng ZHANG Yingbin PENG Xinyan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1019-1035,共17页
In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermitt... In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermittently bedding jointed rock slopes,the correlation and difference in strength parameters between joints and rock bridges,along with the various failure modes and intermittency of rock bridges,contribute to the complexity of stepped failure modes and the unpredictability of failure regions.Based on the upper-bound limit analysis method and multi-sliders step-path failure mode,considering the shear and tensile failure of rock bridges and the weakened relationship between the strength parameters of rock bridges and jointed surfaces,by introducing the modified M-C failure criterion and the formula for calculating the energy consumption of tensile failure of rock bridges,two failure mechanisms are constructed to obtain the safety factor(F_(s))of intermittently jointed rock slopes.The sequential quadratic programming method is used to obtain the optimal upper-bound solution for F_(s).The influence of multiple key parameters(slope height H,horizontal distance L,Slope angleβ,shear strength parameters of the rock bridgeφr and cr,Dimensionless parameter u,weakening coefficients of the internal friction angle and cohesion between the rock bridges and joint surfaces Kφand Kc)on the stability analysis of intermittently jointed rock slopes under the shear failure mode of rock bridges as well as under the tensile failure mode is also explored.The reliability of the failure mechanisms is verified by comparative analysis with theoretical results,numerical results,and landslide cases,and the variation rules of F_(s)with each key parameter are obtained.The results show that F_(s) varies linearly withφr and cr of the rock bridge and with K_(φ)and K_(c),whereas F_(s)changes nonlinearly with H and L.In particular,with the increase in Kφand Kc,Fs increases by approximately 52.78%and 171.02%on average,respectively.For rock bridge tensile failure,F_(s) shows a nonlinearly positive correlation withφr,cr,Kφand Kc.In particular,with the increase in Kφand Kc,Fs increases by approximately 13%and 61.69%on average,respectively.Fs decreases rapidly with increasing slope gradientβand decreasing dimensionless parameterμ.When Kφand Kc are both less than 1.0,the stepped sliding surface occurs more easily than the plane failure surface,especially in the case of tensile failure of the rock bridge.In addition,rock slopes with higher strength parameters,taller heights,and greater weakening coefficients are prone to rock bridge tension failure with lower Fs,and more attention should be given to the occurrence of such accidents in actual engineering. 展开更多
关键词 Jointed rock slopes Stepped sliding failure Weakening characteristics Modified M‒C failure criterion
下载PDF
Hybrid finite-discrete element modelling of asperity degradation and gouge grinding during direct shearing of rough rock joints 被引量:10
6
作者 H. Y. Liu Haoyu Han +1 位作者 H. M. An J. J. Shi 《International Journal of Coal Science & Technology》 EI 2016年第3期295-310,共16页
A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity... A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity sliding to degradation and from gouge formation to grinding. It is found that, in the direct shear test of rough rock joints under constant normal displacement loading conditions, higher shearing rate promotes the asperity degradation but constraints the volume dilation, which then results in higher peak shear resistance, more gouge formation and grinding, and smoother new joint surfaces. Moreover, it is found that the joint roughness affects the joint shear resistance evolution through influencing the joint fracture micro mechanism. The asperity degradation and gouge grinding are the main failure micro-mechanism in shearing rougher rock joints with deeper asperities while the asperity sliding is the main failure micro-mechanism in shearing smoother rock joints with shallower asperities. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool better than traditional finite element method and discrete element method for modelling the joint sliding, asperity degradation, gouge formation, and gouge grinding occurred in the direct shear tests of rough rock joints. 展开更多
关键词 Hybrid FEM-DEM rock joint Asperity sliding Asperity shearing Fragment grinding
下载PDF
A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect 被引量:4
7
作者 Z.Liu C.Y.Zhou +2 位作者 B.T.Li Y.Q.Lu X.Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期457-467,共11页
The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study... The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. 展开更多
关键词 Soft rock Hydro-mechanical (HM) effect Mineral dissolution-diffusion Grain sliding model
下载PDF
Key issues in rock mechanics of the Three Gorges Project in China 被引量:2
8
作者 Qixiang Fan Hongbing Zhu Xuchun Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第4期329-342,共14页
The Three Gorges Project is one of the essential key projects for flood controlling and water resources regulation in the Yangtze River. The project includes a river-crossing dam, underground powerhouses, and navigati... The Three Gorges Project is one of the essential key projects for flood controlling and water resources regulation in the Yangtze River. The project includes a river-crossing dam, underground powerhouses, and navigation structures. Because of the huge size and complicated construction technologies, the project faced a series of challenging engineering issues. In terms of rock mechanics, there are many key technical issues, including the sliding resistance and stability of the dam section along the foundations of powerhouses No.l-5, the ,,;lope stability of the double-line five-stage shiplock, excavation of large-scale underground powerhouses, and curtain grouting under the dam. With decades of scientific research and 16 years of practical construction experiences and reservoir operations, these key technical issues in construction of the Three Gorges Project are successfully resolved, which will attribute to the development of hydropower technology. On the basis of the monitoring data during construction and normal operation periods of the Three Gorges Project, this paper presents a systematic analysis of these key rock mechanical issues in terms of behaviors, solutions, dynamic controlling, monitoring arrangement and integrated assessment. 展开更多
关键词 Three Gorges Project rock mechanics dam sliding resistance and stability high shiplock slope undergroundpowerhouses curtain grouting
下载PDF
A numerical study of rock burst development and strain energy release 被引量:16
9
作者 Wang Li Lu ZhongLiang Gao Qian 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期675-680,共6页
We consider rock burst to be a dynamic disaster similar to earthquakes,rapid land sliding,or coal mine gas dynamic disasters.Multi-scale mechanical principles imply the same mechanism of damage evolution proceeds the ... We consider rock burst to be a dynamic disaster similar to earthquakes,rapid land sliding,or coal mine gas dynamic disasters.Multi-scale mechanical principles imply the same mechanism of damage evolution proceeds the catastrophe.Damage may occur at various scales from a meso-scopic scale to a macroscopic,or engineering scale.Rock burst is a catastrophe at the scale of the engineering structure,such as a tunnel cross section or the work face of a long wall mine.It results from dynamic fracture of the structure where microscopic damage nucleates,expands,and finally propagates into a macroscopic sized fracture band.Rock burst must,therefore,undergo a relatively long development,or gestation,time before its final appearance.In this paper,a study of rock burst within a deeply buried tunnel by numerical methods is described.The results show that during rock burst gestation the distributed microscopic damage in the rock surrounding the tunnel localizes,intersects,and then evolves into a set of concentrated ''V'' shaped damage bands.These concentrated damage bands propagate in the direction of maximum shear as shearing slide bands take shape.Rock burst happens within the wedge separated by the shear bands from the native tunnel rock.An analysis of the wedge fracture shows that the unloading effects result in rock burst and rapid release of the strain energy.The implications for rock burst prediction in tunnels are that:(1) rock burst develops in the upper arch corners of in the tunnel cross section prior to developing in other zones,so good attention must be paid there;(2) all monitoring,prevention,and treatment of rock burst should be done during the gestation phase;(3) the shear bands contain abundant information concerning the physics and mechanics of the process and they are the foundation of physical and mechanical monitoring of acoustic emission,micro seismic events,stress,and the like.Thus a special study of the shearing mechanism is required. 展开更多
关键词 rock burst Gestation Shearing sliding bands Wedge Strain energy
下载PDF
Cyclic load testing of pre-stressed rock anchors for slope stabilization 被引量:6
10
作者 ZHENG Da LIU Fang-zhou +2 位作者 JU Neng-pan FROST J.David HUANG Run-qiu 《Journal of Mountain Science》 SCIE CSCD 2016年第1期126-136,共11页
The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subject... The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subjected to quasi-static cyclic loading.The experimental configuration includes the installation of 15 pre-stressed cables in a slope model made of concrete blocks(theoretically rigid rock mass) on top of a pre-existing sliding surface.The study showed that:(i) The pre-stressed cables exhibited great seismic performance.Rapid displacement of the model blocks was observed after the complete loss of the initial pre-stress load under continued applied cyclic loads and exceedance of the state of equilibrium,which implies the higher the initial pre-stress load,the better the seismic performance of the rock anchor;(ii) The failure of the pre-stressed cables was due to fracture at the connection of the tendons and cable heads under cyclic loading.The sequence of failure had a distinct pattern.Failure was first observed at the upper row of cables,which experienced the most severe damage,including the ejection of cable heads.No evidence of de-bonding was observed during the cyclic loading;(iii) The stress distribution of the bond length for pre-stressed cables was highly non-uniform.High stress concentrations were observed at both the fixed end and the free end of the bond length both before and immediately after the state of equilibrium is exceeded.The results obtained can be used to evaluate the overall performance of pre-stressed rock anchors subject to seismic loading and their potential as rockfall prevention and stabilization measures. 展开更多
关键词 stabilization rock sliding stressed cable blocks anchor ejection implies experienced
下载PDF
Geomorphic Processes, Rock Quality and Solid Waste Management—Examples from the Mt. Everest Region of Nepal
11
作者 Eva Posch Rainer Bell +1 位作者 Johannes Thomas Weidinger Thomas Glade 《Journal of Water Resource and Protection》 2015年第16期1921-1308,共18页
Sagarmatha National Park and Buffer Zone (SNPBZ) in the Everest region in Nepal is among the most popular destinations for trekking tourism in Nepal. The dramatic growth of the tourism industry has increased pressures... Sagarmatha National Park and Buffer Zone (SNPBZ) in the Everest region in Nepal is among the most popular destinations for trekking tourism in Nepal. The dramatic growth of the tourism industry has increased pressures on the environment and the National Park is heavily affected by the rapidly growing waste issue. Besides, major mass movements play an important role in the Himalaya and have been observed in SNPBZ. Also, seasonal monsoon floods, debris flows, rock falls, landslides and the creation of glacial lake outburst floods are frequently occurring in the region. This paper explores the reciprocal interactions between the geo-environment and solid waste management in Everest’s SNPBZ. Therefore, geological characteristics and geomorphological processes, especially the two large rockslides in Lukla and Khumjung, as well as their consequences for rock quality, climatic and hydrologic conditions, are analyzed and simultaneously connected to the rapidly growing tourism-induced waste issue. Rockslide material shows high porosity and permeability. Thus, we argue that rockslide facies are particularly vulnerable to contamination by waste water and washed out agricultural fertilizers, which pose threats to the population especially in Namche Bazaar but probably also in Lukla. Also, the landfill sites are often affected by geomorphological processes and may consequently contaminate surface and ground water. Results highlight that regional infrastructure planning of landfill sites often collides with the natural features of the geo-environment and often causes harm to human health and the environment. The implications of the results can be applied to similar areas (such as Marsyandi Valley, Kali Gandaki Valley) with special geological characteristics and rapidly growing waste issues. 展开更多
关键词 Sagarmatha National PARK and Buffer Zone rock slide FACIES HYDROGEOLOGY LANDFILLS Tourism-Impact
下载PDF
松软厚煤层区段煤柱剪切滑块运动机理及协同控制技术 被引量:2
12
作者 王方田 屈鸿飞 +3 位作者 张洋 刘超 郝文华 江振鹏 《煤炭学报》 EI CAS CSCD 北大核心 2024年第3期1332-1344,共13页
松软厚煤层区段煤柱高、煤壁暴露面积大,加之煤质松软、裂隙发育,强采动作用下极易造成煤柱失稳,巷道维护难度极大。以山西伏岩煤业3号煤层开采为工程背景,基于剪切滑块理论,探究采掘扰动下煤柱变形破坏机理,求解煤柱剪切滑块运动范围... 松软厚煤层区段煤柱高、煤壁暴露面积大,加之煤质松软、裂隙发育,强采动作用下极易造成煤柱失稳,巷道维护难度极大。以山西伏岩煤业3号煤层开采为工程背景,基于剪切滑块理论,探究采掘扰动下煤柱变形破坏机理,求解煤柱剪切滑块运动范围及应力分布规律,揭示煤柱侧帮剪切滑块运动机理,提出煤柱稳定性协同控制对策并在现场进行工程实践验证。结果表明:①采用极限平衡理论与叠加理论,确定了煤柱剪切滑块运动范围及煤柱垂直应力分布规律,阐明煤柱剪切滑块安全系数分布规律:0~1.26 m深度,煤柱上部安全系数较小;在1.26~3.95 m处,煤柱中线部分大面积安全系数较小,易受顶板来压破坏。②提出了1种以“注浆加固—锚索强化—切顶卸压”为主体的区段煤柱协同控制技术,煤柱侧裂隙较无支护条件及原支护条件分别减少62.89%和46.26%,巷道围岩完整性大幅提高,形成了强承载结构,有效控制了煤柱变形及底臌。③根据松软厚煤层区段煤柱条件,合理确定了协同控制设计参数,并对煤柱防控效果进行试验监测评估。现场试验结果表明,煤柱裂隙得到充分填充,注浆后煤体强度提高63%以上;巷道位移、锚杆索受力、离层等均在可控范围,表明协同控制技术明显提高了煤柱承载力,回采巷道围岩变形得到有效控制,为工作面安全高效开采提供了空间保障。 展开更多
关键词 松软煤层 煤柱 剪切滑块 协同控制 围岩稳定性
下载PDF
露天矿高陡复杂边坡软弱岩层组“坐落-滑移式”破坏模式研究 被引量:1
13
作者 聂兴信 吴功勇 +2 位作者 张鑫 赵一迪 王哲 《工业安全与环保》 2024年第5期40-44,共5页
边坡稳定性问题随露天矿开采的进行不断突出,而边坡软弱岩层严重影响边坡稳定性。大量工程实例显示,露天矿含软弱岩层组的高陡复杂边坡失稳模式通常为“坐落-滑移式”破坏。为明晰露天矿高陡复杂边坡软弱岩层组“坐落-滑移式”破坏模式... 边坡稳定性问题随露天矿开采的进行不断突出,而边坡软弱岩层严重影响边坡稳定性。大量工程实例显示,露天矿含软弱岩层组的高陡复杂边坡失稳模式通常为“坐落-滑移式”破坏。为明晰露天矿高陡复杂边坡软弱岩层组“坐落-滑移式”破坏模式的破坏机理,以某露天矿为例,提出一种针对露天矿含软弱岩层组高陡复杂边坡的综合分析方法。研究结果表明:采用工程地质分析、传统极限平衡方法和数值模拟分析相结合的综合分析方法,针对该类型复杂边坡可发挥不同分析方法的优势,较全面地从地质自然环境条件、定性定量方面、应力应变角度分析边坡破坏机理及模式,总结归纳出含软弱层组露天矿高陡复杂边坡“坐落-滑移式”破坏的“坐落-滑移-剪出”三段式破坏特征,为其他类似复杂边坡稳定性的分析和防治提供思路和手段。 展开更多
关键词 露天矿高陡边坡 软弱岩层组 “坐落-滑移式”破坏 数值模拟
下载PDF
Study on Sinking-Sliding Failure Mechanism of Perilous Rock at Wangxia in Three Gorges of the Yangtze River, China
14
作者 Hong-Kai Chen Sheng-Juan Wang 《Journal of Geoscience and Environment Protection》 2017年第2期30-43,共14页
The giant perilous rock at Wangxia (named Wangxia perilous rock) is representative in Three Gorges of the Yangtze River, China, has threatened badly the navigation of the Yangtze River channel for a long period. The g... The giant perilous rock at Wangxia (named Wangxia perilous rock) is representative in Three Gorges of the Yangtze River, China, has threatened badly the navigation of the Yangtze River channel for a long period. The giant perilous rock is composed of siliceous limestone and argillaceous limestone, and includes two elements marking by W1 and W2, respectively. The W1 is an isolated pillar while the W2 is in clintheriform. The linking segment of dominant fissure in the W2 is composed by moniliform solution funnels at its back, and the locked segment of the dominant fissure at the base of the W2 is composed by two parts. For the locked part of the dominant fissure of the W2, the upper segment shows the same lithology with the perilous rock and it can be simplified as an elastic medium, for the lower segment composed by argillaceous shale and mudstone can be simplified as a strain-softening medium. Introducing the water-softened function, the constitutive curves with two kinds of medium materials for the locked segment in the dominant fissure of the W2 have been proposed. Based on energy principle, the cusp catastrophe model for perilous rock rupture is built and formulas for the transient elastic and impulsive acceleration and the elastic-impulsive velocity of perilous rock catastrophe rupture have been established. By the calculation, the elastic-impulsive acceleration for the catastrophe rupture of the W2 is 531.4 m/s2, while the average elastic-impulsive velocity is 2.608 m/s. Further, it is deduced that the elastic-impulsive velocity at the base of the W2 is about 5.2 m/s. For the transient ruture of the W2, there is a greater speed difference between the top and the base of the W2, which impels the giant perilous rock to be retroverted sliding rupture, coinciding with the fact. Undoubtedly, studies in this paper must play an important role to analyze the catastrophe rupture mechanism of giant perilous rocks at both banks in Three Gorges of the Yangtze River, China. 展开更多
关键词 Sinking-Sliding Failure MECHANISM Water-Softened Function CATASTROPHE Theory Energy Principle Giant Perilous rock Three Gorges of the YANGTZE River China
下载PDF
摩擦耗能型摇摆柱节点抗震性能研究
15
作者 李成玉 姚宗杰 +2 位作者 张睿 贾良玖 陈焰周 《建筑钢结构进展》 CSCD 北大核心 2024年第2期1-12,共12页
基于可恢复功能的概念,提出了一种摩擦耗能型摇摆柱节点。阐述了该节点的构造形式并研究了其抗震性能。通过试验和数值模拟,分析了轴压比、弹簧刚度等参数对节点抗震性能的影响及节点在余震和修复情况下的韧性。研究结果表明,在±3... 基于可恢复功能的概念,提出了一种摩擦耗能型摇摆柱节点。阐述了该节点的构造形式并研究了其抗震性能。通过试验和数值模拟,分析了轴压比、弹簧刚度等参数对节点抗震性能的影响及节点在余震和修复情况下的韧性。研究结果表明,在±3%层间位移角内,节点呈现出低损伤特性,摇摆柱始终保持弹性。在轴向力作用下,滞回曲线呈明显的“旗帜形”,节点具有良好的自复位性能,最大残余转角仅为0.23%。通过重新拧紧螺栓,节点性能即可恢复至震损前水平,实现抗震韧性。弹簧刚度的增大可以显著提高节点的抗弯承载力;增大轴压比可以提高节点的“屈服”弯矩和极限弯矩。在轴向力作用下节点属于典型的半刚性连接,并确定了节点初始转动刚度的取值范围。针对该节点提出了一个简化的恢复力模型,理论结果与试验结果吻合度较好,为进一步对整体结构进行分析和设计奠定了基础。 展开更多
关键词 摇摆柱 低损伤 自复位 摩擦滑移 抗震性能
下载PDF
基于多种分析方法的岩质边坡稳定性研究 被引量:1
16
作者 何云 徐呈祥 《工程建设与设计》 2024年第9期26-30,共5页
以某岩质高边坡为研究对象,采用楔形体滑动、圆弧滑动及离散元数值模拟等方法对边坡稳定性及治理方案进行综合分析研究。研究结果表明:按设计坡率为1∶0.3进行开挖后坡体主要发生楔形体滑动及圆弧滑动破坏,开挖完成后坡脚变形大,边坡治... 以某岩质高边坡为研究对象,采用楔形体滑动、圆弧滑动及离散元数值模拟等方法对边坡稳定性及治理方案进行综合分析研究。研究结果表明:按设计坡率为1∶0.3进行开挖后坡体主要发生楔形体滑动及圆弧滑动破坏,开挖完成后坡脚变形大,边坡治理工程措施不具备实施性;按边坡放坡坡率为1∶1进行分析,坡体稳定性系数满足规范要求,同时开挖完成后坡脚变形相对减小。最后基于边坡稳定性计算分析对边坡治理方案提出针对性建议。 展开更多
关键词 岩质高边坡 变形破坏机制 楔形体 圆弧滑动 数值模拟 边坡稳定性
下载PDF
基于GeoSMA-3D的岩质边坡异形滑动面搜索方法
17
作者 王述红 李忠 +1 位作者 侯钦宽 李友明 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期1159-1166,共8页
针对岩体结构面发育特征的不确定性,提出一种岩质边坡异形滑动面搜索方法 .以Ⅲ,Ⅳ结构面岩体为研究对象,结合GeoSMA-3D(geotechnical structure and model analysis-3D)程序中块体切割和关键块体判别模块,将滑坡体设定为几何多面体.岩... 针对岩体结构面发育特征的不确定性,提出一种岩质边坡异形滑动面搜索方法 .以Ⅲ,Ⅳ结构面岩体为研究对象,结合GeoSMA-3D(geotechnical structure and model analysis-3D)程序中块体切割和关键块体判别模块,将滑坡体设定为几何多面体.岩体的内部块体组合形成多面体,以多面体的表面表征滑动面.引入层次分析法,建立滑动面准定量化评价准则.以小盘岭边坡为例,将异形滑动面判定准则导入GeoSMA-3D程序中,研究表明边坡存在6个关键块体,组合滑动面有3个,潜在滑动面安全系数为1.046,滑动面几何形态与实际边坡拟合度高达95%,验证了岩质边坡滑动面搜索方法的合理性. 展开更多
关键词 岩质边坡 滑动面 GeoSMA-3D 关键块体 层次分析法
下载PDF
应力波作用下隧洞顶板围岩块体失稳滑动解析理论研究
18
作者 王晓 《力学学报》 EI CAS CSCD 北大核心 2024年第1期183-197,共15页
由于地质结构和开挖面的影响,隧洞围岩通常被切割成不同形状和尺寸的块体.其中,一些关键块体在开挖卸载后仍然保持稳定,但当受到应力波(如爆破振动和地震等)的干扰时可能会失去稳定性并滑动.基于应力波传播理论推导了隧洞围岩顶板矩形... 由于地质结构和开挖面的影响,隧洞围岩通常被切割成不同形状和尺寸的块体.其中,一些关键块体在开挖卸载后仍然保持稳定,但当受到应力波(如爆破振动和地震等)的干扰时可能会失去稳定性并滑动.基于应力波传播理论推导了隧洞围岩顶板矩形关键块体动力失稳滑动解析模型,在计算块体滑动位移过程中,考虑了块体间节理的不同闭合-张开模式,并采用线弹性模型和库仑滑移模型来描述节理的法向和切向行为.通过UDEC数值模型验证了解析模型的有效性和可靠性.随后,基于解析模型探讨了可能影响块体失稳滑动的参数.研究结果表明:在应力波作用下,隧洞围岩块体间节理面会闭合-张开,在张开过程中节理面的摩擦力会逐渐降低,甚至为零,块体间节理面的超低摩擦和无摩擦阶段对块体滑动位移的影响最大;当应力波垂直作用于围岩块体结构面且强度足以诱使节理面张开时,影响块体滑动位移较大的参数是节理面初始法向应力、应力波振幅、频率和块体岩性,单周期正弦应力波下块体滑动位移的变化在0.659~1.502 mm之间;其次为节理初始法向刚度、块体尺寸,块体滑动位移的变化在0.15~0.168 mm之间. 展开更多
关键词 应力波 围岩块体 失稳滑动 节理 解析模型
下载PDF
金沙江上游白格滑坡黏土化蚀变岩的灾变力学行为研究
19
作者 李金秋 张永双 +1 位作者 任三绍 毕俊擘 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期72-82,共11页
金沙江构造结合带是典型的板块碰撞作用形成的构造混杂岩带,不仅地质结构复杂,而且发育了工程特性极差的特殊岩土体。本文在金沙江上游白格滑坡成因机理调查与分析过程中,新发现了巨型滑坡体后缘滑壁发育厚度较大、分布较连续的黏土化... 金沙江构造结合带是典型的板块碰撞作用形成的构造混杂岩带,不仅地质结构复杂,而且发育了工程特性极差的特殊岩土体。本文在金沙江上游白格滑坡成因机理调查与分析过程中,新发现了巨型滑坡体后缘滑壁发育厚度较大、分布较连续的黏土化蚀变岩,是构成滑动带的重要组分。基于相关样品的原位测试和室内系统的物质组成、耐崩解、环形剪切、动三轴等物理力学试验研究,揭示了黏土化蚀变岩的灾变力学特性及其在白格滑坡形成演化中的作用。主要结论如下:1)白格滑坡黏土化蚀变岩是金沙江构造结合带中蛇绿岩蚀变的产物,蚀变程度高,蚀变系数介于0.64~0.86之间,黏土矿物成分以伊利石为主、伊/蒙混层矿物次之,遇水极易崩解,崩解指数达50%以上;2)黏土化蚀变岩中工程性质最差的是蚀变黏土,水和振动荷载作用下剪切强度弱化显著,含水率由10%增至20%后剪切强度降幅达34%,动强度远小于其静强度,并随着振动次数的增加不断降低,蚀变黏土是促进斜坡岩体结构面贯通、破坏的重要因素;3)白格滑坡滑动面的形成受节理结构面与黏土化蚀变岩联合控制,整体上可分为2种模式:黏土化蚀变岩厚层软弱夹层型和充填节理裂隙贯通型;4)金沙江上游发育的不少巨型高位滑坡与黏土化蚀变岩不良工程特性具有密切的关系,岩体结构与特殊岩性的组合是值得关注的区域性易滑地质结构。以上结论对于青藏高原东缘大江大河岸坡稳定性分析和防灾减灾具有较好的启示意义。 展开更多
关键词 白格滑坡 黏土化蚀变岩 强度弱化 易滑地质结构 控滑作用
下载PDF
大型顺层岩石滑坡中多排组合桩加固的数值模拟
20
作者 张阳阳 《矿业工程研究》 2024年第3期70-78,共9页
为探究大型顺层岩石滑坡的合理支挡防护体系,确保顺层岩石边坡的稳定性,依托安徽某顺层滑坡,基于数值模拟方法,分析“单排桩(或锚拉桩)+h型抗滑桩”联合支护体系在顺层岩石滑坡中的受力特性及支挡防护效果.研究表明:滑坡下部临空面支护... 为探究大型顺层岩石滑坡的合理支挡防护体系,确保顺层岩石边坡的稳定性,依托安徽某顺层滑坡,基于数值模拟方法,分析“单排桩(或锚拉桩)+h型抗滑桩”联合支护体系在顺层岩石滑坡中的受力特性及支挡防护效果.研究表明:滑坡下部临空面支护与中上部h型桩相关联,且下部单排桩增设锚索后,h型桩桩顶和滑面处位移明显降低,最大弯矩和剪力也有下降趋势;h型桩连梁与后排桩的连接方式对抗滑桩的支护效果有一定影响,固接效果强于铰接,连梁固/铰接方式对h型桩支护结构的弯矩和剪力的影响远小于单排桩有无锚索对h型桩支护结构的弯矩和剪力的影响;“单排桩(或锚拉桩)+h型抗滑桩”联合支护体系可以有效地控制坡体变形,确保顺层滑坡支挡后处于稳定状态.研究成果可为此类岩石边(滑)坡的支护治理提供一定的理论借鉴. 展开更多
关键词 顺层岩石滑坡 抗滑桩 锚索 h型抗滑桩 数值模拟
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部