期刊文献+
共找到356篇文章
< 1 2 18 >
每页显示 20 50 100
Seismogenic Structure around the Epicenter of the May 12,2008 Wenchuan Earthquake from Micro-seismic Tomography 被引量:7
1
作者 AN Meijian FENG Mei +5 位作者 DONG Shuwen LONG Changxing ZHAO Yue YANG Nong ZHAO Wenjin ZHANG Jizhong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期724-732,共9页
A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed... A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of -2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least -10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu- Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a -7 km offset with -5 km vertical component. 展开更多
关键词 Wenchuan earthquake seismogenic structure micro-seismic tomography Pengguan massif Longmen Shan fault zone
下载PDF
Relocation and seismogenic structure of the 1998 Zhangbei-Shangyi earthquake sequence 被引量:2
2
作者 杨智娴 陈运泰 张宏志 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第4期383-394,共12页
On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern... On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern China in the recent years. Historical seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault capable of generating a moderate earthquake like this event was found. The earthquake locations of the main shock and its aftershocks of the Zhangbei-Shangyi earthquake sequence given by several agencies and authors were diverse and the resulted hypocentral distribution revealed no any dominant horizontal lineation. To study the seismogenic structure of the Zhangbei-Shangyi earthquake, in this paper the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated using the master event relative relocation algorithm. The relocated results show that the epicentral location of the main shock was 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 15 km. The hypocenters of the aftershocks distributed in a nearly vertical N20E-striking plane and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a nearly N-S- to NNE-SSW-striking fault with right-lateral and reverse slip, and that the occurrence of this event was associated with the horizontal and ENE-oriented compressive tectonic stress, which was compatible with the tectonic stress field in the northern China. 展开更多
关键词 Zhangbei-Shangyi earthquake earthquake relocation seismogenic structure source process
下载PDF
Spatio-temporal characteristics of aftershocks and seismogenic structure of the 2011 Mw9.0 Tohoku earthquake,Japan 被引量:2
3
作者 Farah Lazzali 《Earthquake Science》 CSCD 2012年第3期219-227,共9页
The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more t... The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter’s relation, Bath’s law, Omori’s law, and Well’s relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter’s relation, and the modified form of Omori’s law are confirmed based on the aftershock sequence data from the Mw9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks. 展开更多
关键词 2011MW9.0 Tohoku earthquake AFTERSHOCK seismogenic structure
下载PDF
Study of the Seismogenic Structure of the October 12^(th),2019 MS5.2 Beiliu Earthquake,Guangxi,China 被引量:2
4
作者 BI Lisi LU Banghua +1 位作者 YANG Xuan WU Bin 《Earthquake Research in China》 CSCD 2020年第2期227-239,共13页
On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-... On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-strong earthquakes are relatively active. The highest intensity of this earthquake is estimated up to Ⅵ besides the isoseismic line showed an ellipse shape with a long axis trend in the NW direction.The aftershocks are not evenly distributed. The parameters of the focal mechanism solutions are: strike 346°,dip 85°,rake 19° for the nodal planeⅠ,and strike 254°,dip 71°,rake 175° for the nodal planeⅡ. The type of the coseismic fault is strikeslip. After analyzing these results above and the active faults near the epicenter,we get that the nodal planeⅠ is interpreted as the coseismic rupture plane and the BamaBobai Fault is a seismogenic structure of MS5.2 Beiliu earthquake. 展开更多
关键词 MS5.2 Beiliu earthquake seismogenic structure Border area between Guangdong and Guangxi Bama-Bobai Fault
下载PDF
Examination of Historical Data of the 1125 Lanzhou M 7.0 Earthquake and Analysis of Seismogenic Structure 被引量:1
5
作者 Yuan Daoyang, Lei Zhongsheng, Liu Baichi, Cai Shuhua, Liu Xiaofeng and Wang YongchengLanzhou Institute of Seismology, China Seismological Bureau, Lanzhou 730000, China 《Earthquake Research in China》 2002年第4期351-362,共12页
Detailed examination of historical data of earthquakes and field investigations of loess landslide caused by the earthquake and tracing of active faults in Lanzhou area indicate that the Yijitanpu town, one of six tow... Detailed examination of historical data of earthquakes and field investigations of loess landslide caused by the earthquake and tracing of active faults in Lanzhou area indicate that the Yijitanpu town, one of six towns of Jincheng city, was devastated by the 1125 Lanzhou earthquake. The citly is now located in the Vinylon Factory south of Hekou (River Mouth) in the Xigu district of Lanzhou city. We delermined that the six old towns mentioned in historical records lie in an area stretching from the south of Xigu district to Hekou in Lanzhou. This is consistent with the distribution of loess landslides caused by the earthquake, the extension of Holocene active faults, and the distribution of traces of the seismic rupture zone. A comprehensive analysis shows that the seismogenic structure for the 1125 Lanzhou M 7.0 earthquake should be the Xianshuigou fault segment at the western termination of the north-border active fault zone of the Maxianshan Mountains which are located in south of Lanzhou city with the distance of only 4 km. 展开更多
关键词 LANZHOU Historic earthquake Loess landslide seismogenic structure
下载PDF
Research on the Historical Data of the 1585 A. D. South Chaoxian Earthquake and Its Seismogenic Structure 被引量:1
6
作者 Zhai Hongtao Deng Zhihui +2 位作者 Zhou Bengang Li Guang Zheng Yingpin 《Earthquake Research in China》 2010年第1期106-116,共11页
In 1585,a MS5 3/4 earthquake occurred in the south of Chaoxian county,Anhui Province. The parameters of this earthquake were reported differently in various versions of earthquake catalogues. According to detailed tex... In 1585,a MS5 3/4 earthquake occurred in the south of Chaoxian county,Anhui Province. The parameters of this earthquake were reported differently in various versions of earthquake catalogues. According to detailed textual research on the historic records of this earthquake,the epicenter location of the earthquake was further confirmed by means of seismo-geological field investigations in the Chaohu-Tongling region along the western Yangtze River valleys. Shallow seismic prospecting and drilling methods were applied in studying the buried fault. The possibility of the existence of seismogenic faults and fault activity in the western Yangtze River area were analyzed in depth,and the causative tectonic background of the 1585 MS5 3/4 south Chaoxian earthquake was studied. The results of this study indicate that the Yanjiaqiao-Fengshahu fault,which was active in the early to mid-Pleistocene,is possibly the causative structure of this earthquake. To identifying the seismogenic structure of the 1585 south Chaoxian earthquake will help gain more knowledge about the tectonic background of moderate and small earthquake activity in Eastern China. 展开更多
关键词 Historical earthquake verification seismogenic structure Chaoxian Anhui
下载PDF
The Seismogenic Structure and Deformation Mechanism of the Lushan(MW 6.6) Earthquake, Sichuan, China
7
作者 ZHOU Rongjun LI Yong +3 位作者 SHAO Chongjian SU Jinrong YAN Zhaokun YAN Liang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期503-510,共8页
On April 20 th, 2013, an earthquake of magnitude MW 6.6 occurred at Lushan of Sichuan on the southern segment of the Longmenshan fault zone, with no typical coseismic surface rupture. This work plotted an isoseismal m... On April 20 th, 2013, an earthquake of magnitude MW 6.6 occurred at Lushan of Sichuan on the southern segment of the Longmenshan fault zone, with no typical coseismic surface rupture. This work plotted an isoseismal map of the earthquake after repositioning over 400 post–earthquake macro–damage survey points from peak ground acceleration(PGA) data recorded by the Sichuan Digital Strong Earthquake Network. This map indicates that the Lushan earthquake has a damage intensity of IX on the Liedu scale, and that the meizoseismal area displays an oblate ellipsoid shape, with its longitudinal axis in the NE direction. No obvious directivity was detected. Furthermore, the repositioning results of 3323 early aftershocks, seismic reflection profiles and focal mechanism solutions suggests that the major seismogenic structure of the earthquake was the Dayi Fault, which partly defines the eastern Mengshan Mountain. This earthquake resulted from the thrusting of the Dayi Fault, and caused shortening of the southern segment of the Longmenshan in the NW–SE direction. Coseismal rupture was also produced in the deep of the Xinkaidian Fault. Based on the above seismogenic model and the presentation of coseismic surface deformation, it is speculated that there is a risk of more major earthquakes occurring in this region. 展开更多
关键词 Lushan earthquake southern segment of Longmenshan seismogenic structure seismic risk
下载PDF
Seismic intensity investigation of the 2001 M=6.0 Yajiang-Kangding earthquake and discussion on its background of seismogenic structures
8
作者 何玉林 张勤 黄伟 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第1期63-73,共11页
An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According... An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According to field investigation in the region, the intensity of epicentral area reached VIII and the areas with intensity VIII, VII and VI are 180 km2, 1 472 km2 and 3 998 km2, respectively. The isoseismals are generally in elliptic shape with major axis trending near N-S direction. The earthquake destroyed many buildings and produced some phenomena of ground failure and mountainous disasters in the area with intensity VIII. This event may be resulted from long-term activities of the Litang fault and Yunongxi fault, two main faults in the western Sichuan. The movements between the main faults made the crust stress adjusted and concentrated, and finally the earthquake on a secondary fault in the block released a quite large energy. 展开更多
关键词 seismic intensity isoseismal ground failure seismogenic structure Yajiang-Kangding M=6.0 earthquake
下载PDF
Discussion on moment tensor solution and seismogenic structure of Ruichang-Yangxin earthquake on 10 September 2011
9
作者 Lifen Zhang1,2, Guichun Wei and Wulin Liao1 1 Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China 2 Institute of Geophysics, China Earthquake Administration, Beijing 100081, China 《Earthquake Science》 CSCD 2012年第3期229-234,共6页
Ruichang-Yangxin earthquake is another moderate earthquake in Yangxin-Jiujiang area since 2005 Jiujiang-Ruichang M5.7 earthquake. In order to more understand the seismic activities in this area, we study the moment te... Ruichang-Yangxin earthquake is another moderate earthquake in Yangxin-Jiujiang area since 2005 Jiujiang-Ruichang M5.7 earthquake. In order to more understand the seismic activities in this area, we study the moment tensor solution and the seismogenic structure of the Ruichang-Yangxin earthquake. Precise earthquake relocation shows that the mainshock occurred on the southwestern part of the NE-trending fault and aftershocks are distributed not only along the NE-trending fault but also along its conjugated NW-trending fault. By comprehensive analysis on the earthquake distribution, characteristics of isoseismal curve, focal mechanism, and regional structure characteristics, it is inferred that this earthquake is caused by the NE-trending Tanlu fault. In addition, it has close relationship with the conjugated NW-trending fault as well. Many researches have shown that the junction area is the earthquake-prone area, and should be paid more attention to. And our study also proves this viewpoint. 展开更多
关键词 moment tensor inversion Ruichang-Yangxin earthquake seismogenic structure
下载PDF
Seismogenic structure of the 2016 Ms6.4 Menyuan earthquake and its effect on the Tianzhu seismic gap
10
作者 Yanbao Li Weijun Gan +4 位作者 Yuebing Wang Weitao Chen Shiming Liang Keliang Zhang Yongqi Zhang 《Geodesy and Geodynamics》 2016年第4期230-236,共7页
On January 21, 2016, a strong earthquake with a magnitude of Ms6.4 occurred at Menyuan, Qinghai Province of China. In almost the same region, there was another strong earthquake happened in 1986, with similar magnitud... On January 21, 2016, a strong earthquake with a magnitude of Ms6.4 occurred at Menyuan, Qinghai Province of China. In almost the same region, there was another strong earthquake happened in 1986, with similar magnitude and focal mechanism. Based on comprehensive analysis of regional active faults, focal mechanism solutions, precise locations of aftershocks, as well as GPS crustal deformation, we inferred that the Lenglongiing active fault dips NE rather than SW as suggested by previous studies. Considering the facts that the 2016 and i986 Ms6.4 Menyuan earthquakes are closely located with similar focal mechanisms, both of the quakes are on the north side of the Lenglongling Fault and adjacent to the fault, and the fault is dipping NE direction, we suggest that the fault should be the seismogenic structure of the two events. The Lenglongling Fault, as the western segment of the well-known Tianzhu seismic gap in the Qilian-Haiyuan active fault system, is in a relatively active state with frequent earthquakes in recent years, implying a high level of strain accumulation and a high potential of major event. It is also possible that the Lengiongiing Fault and its adjacent fault, the Jinqianghe Fault in the Tianzhu seismic gap, are rupturing simultaneously in the future. 展开更多
关键词 2016 Ms6.4 Menyuan earthquake seismogenic structure Tianzhu seismic gap Qilian-Haiyuan fault system
下载PDF
Re-discussion on the Jiaochang Arcuate Structure, Sichuan Province, and the Seismogenic Structure for Diexi Earthquake in 1933
11
作者 Huang Zuzhi, Tang Rongchang and Liu Shengli Seismological Bureau of Sichuan Province, Chengdu 610041, China 《Earthquake Research in China》 2003年第1期51-62,共12页
The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the So... The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the Songpinggou fault and affirms that the Songpinggou fault is an active fault in the Holocene epoch. The Diexi M 7.5 earthquake took place in 1933 on the west wing of that arcuate structure, near the apex of the arc. Many authors have given quite different opinions about the genetic structure of that earthquake. The authors have made on the spot investigations time and again over recent years. Besides this, the authors have also further studied the shape of intensity contour lines, the distribution characteristics of ground surface seismic hazards, the left lateral dislocation of buildings along the Songpinggou fault, the NW trending ground fissures that developed on the ground surface after earthquake, and so on. On this basis, it is still considered that the seismogenic fault of the 1933 Diexi M 7.5 earthquake was the Songpinggou fault on the west wing of the Jiaochang arcuate structure. 展开更多
关键词 Jiaochang arcuate structure Diexi earthquake Songpinggou fault seismogenic structure
下载PDF
Textual Research on the Historical Data of the 1573 AD Minxian Earthquake in Gansu Province and Discussion on Its Seismogenic Structure
12
作者 Zheng Wenjun Lei Zhongsheng +3 位作者 Yuan Daoyang He Wengui Ge Weipeng LiuXingwang 《Earthquake Research in China》 2007年第4期445-454,共10页
According to the detailed study of the historical earthquake records and causative structure of the Minxian M6 1/2 earthquake in 1573 A.D., we have found that the most grievous disaster area lies nearby the Minxian co... According to the detailed study of the historical earthquake records and causative structure of the Minxian M6 1/2 earthquake in 1573 A.D., we have found that the most grievous disaster area lies nearby the Minxian county seat (Minzhou county at that time ). So, we have identified the extremely seismic area of the 1573 A.D. The Minxian M6 1/2 earthquake was located in Minxian city, the intensity of the meizoseismal region is Ⅷ - Ⅳ, the epicenter is 34.4°N, 104.0°E, the location precision is Ⅱ and the deviation of location is less than or equal to 25km. Tectonically, this area lies in the transition region of stress transfer and structural transform between the east Kunlun fault and the northern margin of the west Qiuling fault. The differential activity of the Lintan-Dangchang fault zone is obvious, and only parts of the segment put up Holocene activity. There are landslides and rock bursts of different sizes in the meizoseismal region. By integrated analysis, we conclude that the Minxian-Dangchang segment of the Lintan-Dangchang fault is the seismogenic structure of the 1573 A.D. M6 1/2 Minxian earthquake, in Gansu Province. 展开更多
关键词 Historical earthquake Textual research seismogenic structure Minxian
下载PDF
Analysis on the Focal Mechanism and Seismogenic Structures of the Yao’an earthquake with M_S6. 0,20091
13
作者 Qin Shuanglong Zhang Jianguo Liao Lixia 《Earthquake Research in China》 2014年第2期219-232,共14页
Using the joint inversion method with the amplitude ratio of P-wave,SV-wave and SHwaves,this paper calculates the focal mechanisms of the aftershock sequence of the Yaoan earthquake with MS6. 0. According to the spati... Using the joint inversion method with the amplitude ratio of P-wave,SV-wave and SHwaves,this paper calculates the focal mechanisms of the aftershock sequence of the Yaoan earthquake with MS6. 0. According to the spatial distribution of earthquake sequence,the author analyzes the characteristics of the stress field and seismogenic fault. The result shows that:( 1) the seismogenic fault of the Yaoan earthquake is a vertical right-lateral strike-slip fault,striking NWW-SEE. The result is reliable and consistent with the nodal planes of the Harvard CMT solution and also in accord with the predominant direction of aftershocks.( 2) The predominant direction of principal compressive stress,NWW-SEE is consistent with the regional tectonic stress,and some aftershocks are different from the main shock. The stress field of the main shock is controlled by the regional tectonic stress field,indicating the diversity and complexity in the seismic area.( 3) By comprehensively analyzing the distribution of the earthquake sequence,focal mechanism and fault structure in the seismic area,it is found that the Maweijing fault is the seismogenic fault of the Yaoan earthquake. 展开更多
关键词 YUNNAN The Yao’an earthquake with MS6.0 Focal mechanism Tectonic stress field Strike-slip fault seismogenic structure
下载PDF
Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 M_S 7.0 Jiuzhaigou earthquake sequence,northern Sichuan, China 被引量:22
14
作者 Feng Long GuiXi Yi +2 位作者 SiWei Wang YuPing Qi Min Zhao 《Earth and Planetary Physics》 CSCD 2019年第3期253-267,共15页
To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were us... To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence. 展开更多
关键词 MS 7.0 Jiuzhaigou earthquake sequence RELOCATION focal mechanism seismogenic structure GEOMETRY tectonic deformation
下载PDF
Relocation of the Jinghe M_S6.6 Earthquake Sequence on August 9,2017 and Analysis of the Seismogenic Structure
15
作者 Liu Jianming Gao Rong +1 位作者 Wang Qiong Nie Xiaohong 《Earthquake Research in China》 CSCD 2018年第4期482-490,共9页
Based on the digital waveforms of the Xinjiang Digital Seismic Network,the Jinghe M_S6.6 earthquake sequence( M_L≥1. 0) were relocated by HypoDD,The characteristics of the spatial distribution and the seismogenic str... Based on the digital waveforms of the Xinjiang Digital Seismic Network,the Jinghe M_S6.6 earthquake sequence( M_L≥1. 0) were relocated by HypoDD,The characteristics of the spatial distribution and the seismogenic structure of this earthquake sequence were analyzed. The results show that the main shock is relocated at 44. 2639° N,82. 8294° E,and the initial rupture depth is 17. 6 km. The earthquake sequence clearly demonstrates a unilateral extension of about 20 km in the EW direction,and is mainly located at a depth of 7km-17 km. The depth profile along the aftershock direction shows that the focal depth of aftershocks tend to be shallower within 10 km to the west of the main shock,the focal depth of the aftershock sequence with the tail direction deflecting SW is deeper. The depth profile perpendicular to the earthquake sequence shows a gradual deepening of the seismic sequence from north to south,which indicates that the fault plane is dipping south.According to the focal mechanism solution,given by the Institute of Geophysics,China Earthquake Administration,and the geological structure of the seismic source region,it is inferred that the seismogenic structure of the Jinghe M_S 6.6 earthquake may be the eastern segment of the Kusongmuxieke fault. 展开更多
关键词 Jinghe MS6.6 earthquake HypoDD location seismogenic structure Kusongmuxieke fault
下载PDF
Seismogenic Structure of the 1605 Qiongshan M7½ Earthquake and Its Holocene Activity History in Northern Hainan Island, China: Evidence from Cross-Section Drilling and Shallow Seismic Profile
16
作者 Chaoqun Wang Liyun Jia +6 位作者 Daogong Hu Shibiao Bai Zhengwang Hu Dongxia Sun Xiaoxiao Yang Lei Zhang Xiumin Ma 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期905-917,共13页
The 1605 M7½ Earthquake is the only earthquake in the history of China that has caused large-scale land subsidence into the sea,with the total area of land subsidence exceeding 100 km2.The disaster has led to the... The 1605 M7½ Earthquake is the only earthquake in the history of China that has caused large-scale land subsidence into the sea,with the total area of land subsidence exceeding 100 km2.The disaster has led to the sinking of 72 villages.There is still no clear understanding of the source seismogenic fault of this earthquake.In this work,we conducted a detailed study of the middle segment of the Maniao-Puqian fault(MPF),which is the epicenter area,through geomorphological survey,data collection,shallow seismic exploration,cross-section drilling,and chronological dating.The results showed that the middle segment of the MPF zone is composed of three nearly parallel normal faults with a dextral strike-slip:“Macun-Luodou fault(F2-1),Haixiu-Dongyuan fault(F2-2),and ChangliuZhuxihe fault(F2-3)”.And F2-2 is composed of two secondary faults,namely F2-2′and F2-2″,with a flower-shaped structure buried under the ground.It is distributed nearly east-west,dipping to the north and has experienced at least five stages of activities since the Miocene.The vertical activity rates of F2-2′and F2-2″are~2.32 and~2.5 mm/a,since the Holocene,respectively.There were eight cycles of transgression and regression since the Miocene.The fault activity resulted in the thickening of the Holocene strata with a slight dip to the south,on the hanging wall,showing V-shaped characteristics.The MPF is likely the source seismogenic fault of the M7½ earthquake that hit Qiongshan in 1605. 展开更多
关键词 seismogenic structure earthquakeS Maniao-Puqian fault fault activity history geomorphology.
原文传递
Deep tectonics and seismogenic mechanisms of the seismic source zone of the Jishishan M_(s)6.2 earthquake on December 18,2023,at the northeast margin of the Tibetan Plateau 被引量:1
17
作者 Qiong Wang ShuYu Li +3 位作者 XinYi Li Yue Wu PanPan Zhao Yuan Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期514-521,共8页
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t... On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault. 展开更多
关键词 Jishishan M_(s)6.2 earthquake crustal structure anisotropy stress and strain seismogenic mechanism northeast margin of the Tibetan Plateau
下载PDF
Study on the Physical Process and Seismogenic Mechanism of the Yangbi MS 6.4 Earthquake in Dali,Yunnan Province
18
作者 DUAN Mengqiao ZHAO Cuiping ZHOU Lianqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期22-23,共2页
The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid ... The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid field investigation and earthquake relocation reveal that there was no obvious surface rupture and the earthquake did not occur on pre-existing active fault,but on a buried fault on the west side of Weixi–Qiaohou–Weishan fault zone in the eastern boundary of Baoshan sub-block.Significant foreshocks appeared three days before the earthquake.These phenomena aroused scholars'intensive attention.What the physical process and seismogenic mechanism of the Yangbi Ms 6.4 earthquake are revealed by the foreshocks and aftershocks?These scientific questions need to be solved urgently. 展开更多
关键词 The Yangbi Ms 6.4 earthquake 3D velocity structure microseismic detection B-VALUE source parameters nuleation process seismogenic mechanism
下载PDF
Preliminary analysis on the source properties and seismogenic structure of the 2017 M_s7.0 Jiuzhaigou earthquake 被引量:10
19
作者 Zujun XIE Yong ZHENG +9 位作者 Huajian YAO Lihua FANG Yong ZHANG Chengli LIU Maomao WANG Bin SHAN Huiping ZHANG Junjie REN Lingyun JI Meiqin SONG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第3期339-352,共14页
At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and ... At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5-20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152~, 74~ and 8~, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 kin. The co-seismic rupture mainly concentrates at depths of 3-13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 660-89~ from northwest to southeast and the average dip angle measures -84~. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake. 展开更多
关键词 Jiuzhaigou earthquake Velocity structure Source parameters seismogenic structure Seismic hazard
原文传递
The seismogenic structures and migration characteristics of the 2021 Yangbi M6.4 Earthquake sequence in Yunnan,China 被引量:2
20
作者 Kun YAN Weijun WANG +3 位作者 Fei PENG Qincai WANG Huadong KOU Aijing YUAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第8期1522-1537,共16页
We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques,to explore the seismogenic st... We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques,to explore the seismogenic structures of the Yangbi mainshock and its nucleation process.The new catalog has three times the number of earthquakes than the CENC catalog,and the magnitude completeness has dropped from 1.1 to 0.5.The distribution of earthquakes indicates a broom-shaped structure consisting of several oblique secondary faults and a strike-slip main fault which strikes to 315°with 80°dipping to NE.The earthquakes extend along the fault strike about 27 km in width and 2-13 km at depth and have noticeable variations on seismicity in the mainshock’s north and south.Compared with the north,the south has denser and higher magnitude aftershocks and also has a seismic gap probably weakened by the fluid at the depth range of about 5-6 km.The foreshocks were mainly active in the 8-kilometer-long fault zone south of the mainshock,which show a steady drop in b-values over time and a migration pattern toward the epicenter of two steep jumps,stagnation,and then acceleration which finally triggered the mainshock.While in the north,seldom foreshock occurred,and the aftershocks were delayed triggered 3 hours after the mainshock,and sparsely scattered shallow at depth and small in magnitude.To summarize,the northern part of the Yangbi seismogenic fault is thought to be relatively locked,whereas the southern part has a weakening zone and promotes pre-slip.The nucleation mechanism of the mainshock and its onset at the junction of the locked and pre-slip zones may be a combination of pre-slip and cascade triggering. 展开更多
关键词 Yangbi earthquake Microseismic detection seismogenic structure earthquake migration earthquake nucleation process
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部