Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,differe...Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.展开更多
Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the ...Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the other hand,feature selection algorithms with artificial neural networks(ANN)usually require normalization of input data,which will probably change some characteristics of original data that are important for classification.To overcome the problems mentioned above,this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron(MLP)to form a new artificial neural network.Furthermore,fuzzification strategy and feature measurement based on membership space are proposed for feature selection. Finally,experiments with both natural and artificial data are carried out to compare with other methods,and the results approve the validity of the algorithm.展开更多
From the perspective of ecological construction of roads, the reduction and purifying effects of greening plants on noise, raising dust and automobile exhaust, selection principles of arbors, shrubs, ground cover plan...From the perspective of ecological construction of roads, the reduction and purifying effects of greening plants on noise, raising dust and automobile exhaust, selection principles of arbors, shrubs, ground cover plants and herbaceous fl owers, and the methods of collocating arbors shrubs and grass in the construction of ecological roads were discussed in this study.展开更多
In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti...In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.展开更多
Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadoli...Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which展开更多
Price prediction plays a crucial role in portfolio selection (PS). However, most price prediction strategies only make a single prediction and do not have efficient mechanisms to make a comprehensive price prediction....Price prediction plays a crucial role in portfolio selection (PS). However, most price prediction strategies only make a single prediction and do not have efficient mechanisms to make a comprehensive price prediction. Here, we propose a comprehensive price prediction (CPP) system based on inverse multiquadrics (IMQ) radial basis function. First, the novel radial basis function (RBF) system based on IMQ function rather than traditional Gaussian (GA) function is proposed and centers on multiple price prediction strategies, aiming at improving the efficiency and robustness of price prediction. Under the novel RBF system, we then create a portfolio update strategy based on kernel and trace operator. To assess the system performance, extensive experiments are performed based on 4 data sets from different real-world financial markets. Interestingly, the experimental results reveal that the novel RBF system effectively realizes the integration of different strategies and CPP system outperforms other systems in investing performance and risk control, even considering a certain degree of transaction costs. Besides, CPP can calculate quickly, making it applicable for large-scale and time-limited financial market.展开更多
Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented...Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented more efficiently in a local manner and that the local approaches could match or even surpass the accuracy of the global implementations. In this work, three localization approaches are compared: a local RBF method, a partition of unity method, and a recently introduced modified partition of unity method. A simple shape parameter selection method is introduced and the application of artificial viscosity to stabilize each of the local methods when approximating time-dependent PDEs is reviewed. Additionally, a new type of quasi-random center is introduced which may be better choices than other quasi-random points that are commonly used with RBF methods. All the results within the manuscript are reproducible as they are included as examples in the freely available Python Radial Basis Function Toolbox.展开更多
基金funded by the Young Academic Leaders Supporting Project in Institutions of Higher Education of Shanxi Province,China
文摘Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.
基金Supported by National Natural Science Foundation of P.R.China(60135020)the Project of National Defense Basic Research of P.R.China(A1420061266) the Foundation for University Key Teacher by the Ministry of Education
文摘Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the other hand,feature selection algorithms with artificial neural networks(ANN)usually require normalization of input data,which will probably change some characteristics of original data that are important for classification.To overcome the problems mentioned above,this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron(MLP)to form a new artificial neural network.Furthermore,fuzzification strategy and feature measurement based on membership space are proposed for feature selection. Finally,experiments with both natural and artificial data are carried out to compare with other methods,and the results approve the validity of the algorithm.
基金Sponsored by Scientific Research Project of Public Welfare Industry of the Ministry of Land and Resources,China(201311006-4)
文摘From the perspective of ecological construction of roads, the reduction and purifying effects of greening plants on noise, raising dust and automobile exhaust, selection principles of arbors, shrubs, ground cover plants and herbaceous fl owers, and the methods of collocating arbors shrubs and grass in the construction of ecological roads were discussed in this study.
文摘In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.
文摘Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which
文摘Price prediction plays a crucial role in portfolio selection (PS). However, most price prediction strategies only make a single prediction and do not have efficient mechanisms to make a comprehensive price prediction. Here, we propose a comprehensive price prediction (CPP) system based on inverse multiquadrics (IMQ) radial basis function. First, the novel radial basis function (RBF) system based on IMQ function rather than traditional Gaussian (GA) function is proposed and centers on multiple price prediction strategies, aiming at improving the efficiency and robustness of price prediction. Under the novel RBF system, we then create a portfolio update strategy based on kernel and trace operator. To assess the system performance, extensive experiments are performed based on 4 data sets from different real-world financial markets. Interestingly, the experimental results reveal that the novel RBF system effectively realizes the integration of different strategies and CPP system outperforms other systems in investing performance and risk control, even considering a certain degree of transaction costs. Besides, CPP can calculate quickly, making it applicable for large-scale and time-limited financial market.
文摘Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented more efficiently in a local manner and that the local approaches could match or even surpass the accuracy of the global implementations. In this work, three localization approaches are compared: a local RBF method, a partition of unity method, and a recently introduced modified partition of unity method. A simple shape parameter selection method is introduced and the application of artificial viscosity to stabilize each of the local methods when approximating time-dependent PDEs is reviewed. Additionally, a new type of quasi-random center is introduced which may be better choices than other quasi-random points that are commonly used with RBF methods. All the results within the manuscript are reproducible as they are included as examples in the freely available Python Radial Basis Function Toolbox.