In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited...In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c...A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.展开更多
Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical pro...Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical properties of Pr0.7Zr0.3O2-δ during the redox process was studied by means of X-ray diffraction(XRD), H2 temperature-programmed reduction(H2-TPR), O2temperature-programmed desorption(O2-TPD), Brunauer-Emmett-Teller(BET) surface area measurement and X-ray photoelectron spectroscopy(XPS) technologies. The results indicated that Pr0.7Zr0.3O2-δ solid solution showed the high activity for the methane conversion to syngas with a high CO selectivity in the range of 83.5%-88.1%. Though Pr-Zr solid solution possessed high thermal stability, lattice oxygen was obviously reduced for the recycled sample due to decreased surface oxygen which promoted oxygen vacancies. The increased oxygen vacancies seemed to enhance the oxygen transfer ability in the redox process and provided sufficient oxygen for the methane selective oxidation, resulting in a satisfactory activity. The problem of hot pot was avoided by comparing fresh, aged and recycle sample in the reaction.展开更多
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ...The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.展开更多
The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and i...The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.展开更多
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane ...A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.展开更多
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ...A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.展开更多
MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100...MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100℃,the MIL-53(Fe)functions well for H2S selective oxidation.The introduction of acetic acid in the presence of benzene-1,4-dicarboxylic acid(H2BDC)would result in a series of MIL-53(Fe)nanocrystals(denoted as MIL-53(Fe)-xH,x stands for the volume of added HAc with morphology evoluting from irregular particles to short hexagonal columns.The vacuum treatment facilitates the removal of acetate groups,thus generating Fe3+Lewis acid sites.Consequently,the resulted MIL-53(Fe)-xH exhibits good catalytic activity(98%H2S conversion and 92%sulfur selectivity)at moderate reaction temperatures(100–190℃).The MIL-53(Fe)-5H is superior to the traditional iron-based catalysts,showing stable performance in a test period of 55 h.展开更多
In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane t...In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane to MA in the absence of molecular oxygen, the Ce-Fe promoted VPO catalyst has more available lattice oxygen and provides higher conversion and selectivity than that of the unpromoted one. It is supposed that the introduction of Ce-Fe complex oxides improves redox performance of VPO catalyst and increases the activity of lattice oxygen. For partial oxidation of methane to synthesis gas over LaFeO3 and La0.8Sr0.2FeO3 oxides, the reaction with flow switched between 11% O2-Ar and 11% CH4-He at 900℃ was carried out. The results show that methane can be oxidized to CO and H2 with selectivity over 93% by the lattice oxygen of the catalyst in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of the LaFeO3 and La0.8Sr0.2FeO3 catalyst instead of molecular oxygen to react with methane to synthesis gas in the redox mode.展开更多
Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the additio...Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the addition of Cs, which could probably enhance the dehydrogenation ability and weaken the oxygenation ability of the catalyst based on temperature programmed reduction (TPR) analysis investigation. The kinetic studies indicated that the oxidation of isobutylene to methacrolein followed the first-order kinetic behavior.展开更多
FeOx-SiO2 catalysts prepared by a sol-gel method were studied for the selective oxidation of methane by oxygen. A single-pass formaldehyde yield of 2.0% was obtained over the FeOx-SiO2 with an iron content of 0.5 wt% ...FeOx-SiO2 catalysts prepared by a sol-gel method were studied for the selective oxidation of methane by oxygen. A single-pass formaldehyde yield of 2.0% was obtained over the FeOx-SiO2 with an iron content of 0.5 wt% at 898 K. This 0.5 wt% FeOx-SiO2 catalyst demonstrated significantly higher catalytic performances than the 0.5 wt% FeOx/SiO2 prepared by an impregnation method. The correlation between the catalytic performances and the characterizations with UV-Vis and H2-TPR suggested that the higher dispersion of iron species in the catalyst prepared by the sol-gel method was responsible for its higher catalytic activity for formaldehyde formation. The modification of the FeOx-SiO2 by phosphorus enhanced the formaldehyde selectivity, and a single-pass formaldehyde yield of 2.4% could be attained over a P-FeOx-SiO2 catalyst (P/Fe = 0.5) at 898 K. Raman spectroscopic measurements indicated the formation of FePO4 nanoclusters in this catalyst, which were more selective toward formaldehyde formation.展开更多
Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and ...Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis.展开更多
The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was eva...The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.展开更多
Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]he...Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.展开更多
The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production ...The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production of DFF from HMF has attracted tremendous attention. Herein, the MoS_(2)/CdIn_(2)S_(4)(MC)flower-like heterojunctions were prepared and considered as photocatalysts for selective oxidation of HMF into DFF under visible-light irradiation in aqueous solution. Results demonstrated MoS_(2) in MC heterojunction could promote the separation of photoexcited electron-hole pairs, while the amount of MoS_(2) dropping was proved influenced on the photocatalytic performance. 80.93% of DFF selectivity was realized when using 12.5% MC as photocatalyst. In addition, the MC catalyst also showed great potential in transformation of other biomass derived benzyl-and furyl-alcohols. The catalytic mechanism suggested that ·O_(2)^(-) was the decisive active radical for HMF oxidation. Therefore, the MC heterojunction could be applied in photocatalytic conversion of biomass to valuable chemicals under ambient condition.展开更多
DBUH-Br_3 catalyzed selective conversion of sulfides to sulfoxides in the presence of H_2O_2 as oxidizing agent is described.The reaction was performed selectively at room temperature and relatively short reaction times.
The combination of Pt^2+, benzoquinone and NaNO2 forms an electron-transfer chain, which leads to the oxidation of methane by O2 in CF3COOH aqueous solution. The overall turnover number per hour (TOF) of methane at...The combination of Pt^2+, benzoquinone and NaNO2 forms an electron-transfer chain, which leads to the oxidation of methane by O2 in CF3COOH aqueous solution. The overall turnover number per hour (TOF) of methane at 120 ℃ is 0.5 h^-1, however, only about one fourth (23%) of methane is converted to the desired product of methanol in the formation of CF3COOCH3. The over-oxidation of methane to CO2, over the catalyst with the Pt^2+ species immobilized via 2,2'-bipyridyl as a ligand on the silica substrate, is depressed distinctly. Under the same conditions, the conversion to methanol dominates, and no CO2 is observed, on account of the over-oxidation of methane, as confirmed by the isotope experiment.展开更多
The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic aci...The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.展开更多
Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of het...Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer(g-C_3N_4),was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C_3N_4 matrix and the characteristic structure of polymeric g-C_3N_4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet-visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C_3N_4 matrix as the form of Co(Ⅱ)-N bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C_3N_4 catalyst due to the synergistic effect of Co species and gC_3N_4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C_3N_4 catalysts, among which the catalyst with 9.0 wt%Co content exhibited the highest yield(9.0%) of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C_3N_4 catalysts was elaborated.展开更多
基金supported by the National Natural Science Foundation of China(32371407,82160421)the Natural Science Foundation of Jiangsu Province(BK20211322)。
文摘In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
基金supported by the National Basic Research Program of China (973 Program,2013CB934104)the China Postdoctoral Science Foundation(2014M560202)~~
文摘A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.
基金Projects(51374004,51174105,51204083,51104074,51306084)supported by the National Natural Science Foundation of ChinaProjects(2012FD016,2014HB006)supported by the Applied Basic Research Program of Yunnan Province,ChinaProject(2010241)supported by the Analysis and Testing Foundation of Kunming University of Science and Technology,China
文摘Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical properties of Pr0.7Zr0.3O2-δ during the redox process was studied by means of X-ray diffraction(XRD), H2 temperature-programmed reduction(H2-TPR), O2temperature-programmed desorption(O2-TPD), Brunauer-Emmett-Teller(BET) surface area measurement and X-ray photoelectron spectroscopy(XPS) technologies. The results indicated that Pr0.7Zr0.3O2-δ solid solution showed the high activity for the methane conversion to syngas with a high CO selectivity in the range of 83.5%-88.1%. Though Pr-Zr solid solution possessed high thermal stability, lattice oxygen was obviously reduced for the recycled sample due to decreased surface oxygen which promoted oxygen vacancies. The increased oxygen vacancies seemed to enhance the oxygen transfer ability in the redox process and provided sufficient oxygen for the methane selective oxidation, resulting in a satisfactory activity. The problem of hot pot was avoided by comparing fresh, aged and recycle sample in the reaction.
基金supported by the National Basic Research Program of China(973 Program,2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.
基金the Hunan Provincial Natural Science Foundation of China (No. 07 JJ4003)
文摘The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Re- search Foundation of Ministry of Education (20040674005)
文摘A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.
基金supported by the National Natural Science Foundation of China (Grant No. 51078185)
文摘A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.
文摘MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100℃,the MIL-53(Fe)functions well for H2S selective oxidation.The introduction of acetic acid in the presence of benzene-1,4-dicarboxylic acid(H2BDC)would result in a series of MIL-53(Fe)nanocrystals(denoted as MIL-53(Fe)-xH,x stands for the volume of added HAc with morphology evoluting from irregular particles to short hexagonal columns.The vacuum treatment facilitates the removal of acetate groups,thus generating Fe3+Lewis acid sites.Consequently,the resulted MIL-53(Fe)-xH exhibits good catalytic activity(98%H2S conversion and 92%sulfur selectivity)at moderate reaction temperatures(100–190℃).The MIL-53(Fe)-5H is superior to the traditional iron-based catalysts,showing stable performance in a test period of 55 h.
基金Supported by China Petroleum & Chemical Corporation(No.X502015)and the National Natural Science Foundation of China(No. 29792073-2)
文摘In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane to MA in the absence of molecular oxygen, the Ce-Fe promoted VPO catalyst has more available lattice oxygen and provides higher conversion and selectivity than that of the unpromoted one. It is supposed that the introduction of Ce-Fe complex oxides improves redox performance of VPO catalyst and increases the activity of lattice oxygen. For partial oxidation of methane to synthesis gas over LaFeO3 and La0.8Sr0.2FeO3 oxides, the reaction with flow switched between 11% O2-Ar and 11% CH4-He at 900℃ was carried out. The results show that methane can be oxidized to CO and H2 with selectivity over 93% by the lattice oxygen of the catalyst in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of the LaFeO3 and La0.8Sr0.2FeO3 catalyst instead of molecular oxygen to react with methane to synthesis gas in the redox mode.
基金国家自然科学基金,国家高技术研究发展计划(863计划),the Open Foundation of State Key Laboratory of Heavy Oil Processing
文摘Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the addition of Cs, which could probably enhance the dehydrogenation ability and weaken the oxygenation ability of the catalyst based on temperature programmed reduction (TPR) analysis investigation. The kinetic studies indicated that the oxidation of isobutylene to methacrolein followed the first-order kinetic behavior.
基金supported by the National Natural Science Foundation of China (Nos.20625310,20773099 and 20873110)the National Basic Programof China (No. 2005CB221408)the National Science Fund for Talent Training in Basic Science (No.J0630429)
文摘FeOx-SiO2 catalysts prepared by a sol-gel method were studied for the selective oxidation of methane by oxygen. A single-pass formaldehyde yield of 2.0% was obtained over the FeOx-SiO2 with an iron content of 0.5 wt% at 898 K. This 0.5 wt% FeOx-SiO2 catalyst demonstrated significantly higher catalytic performances than the 0.5 wt% FeOx/SiO2 prepared by an impregnation method. The correlation between the catalytic performances and the characterizations with UV-Vis and H2-TPR suggested that the higher dispersion of iron species in the catalyst prepared by the sol-gel method was responsible for its higher catalytic activity for formaldehyde formation. The modification of the FeOx-SiO2 by phosphorus enhanced the formaldehyde selectivity, and a single-pass formaldehyde yield of 2.4% could be attained over a P-FeOx-SiO2 catalyst (P/Fe = 0.5) at 898 K. Raman spectroscopic measurements indicated the formation of FePO4 nanoclusters in this catalyst, which were more selective toward formaldehyde formation.
基金the National Key Research and Development Program of China(No.2016YFB0701100)the National Natural Science Foundation of China(Nos.51802015 and 51890893)Fundamental Research Funds for the Central Universities(FRFTP-16-028A1)。
文摘Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis.
基金the National Natural Science Foundation of China(20576023)the Guangdong Province Natural Science Foundation (06025660)
文摘The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.
文摘Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.
基金funded by the National Key Research and Development Program of China ( 2018YFB1501704)the National Natural Science Foundation of China (22078018)the Beijing Natural Science Foundation (2222016)。
文摘The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production of DFF from HMF has attracted tremendous attention. Herein, the MoS_(2)/CdIn_(2)S_(4)(MC)flower-like heterojunctions were prepared and considered as photocatalysts for selective oxidation of HMF into DFF under visible-light irradiation in aqueous solution. Results demonstrated MoS_(2) in MC heterojunction could promote the separation of photoexcited electron-hole pairs, while the amount of MoS_(2) dropping was proved influenced on the photocatalytic performance. 80.93% of DFF selectivity was realized when using 12.5% MC as photocatalyst. In addition, the MC catalyst also showed great potential in transformation of other biomass derived benzyl-and furyl-alcohols. The catalytic mechanism suggested that ·O_(2)^(-) was the decisive active radical for HMF oxidation. Therefore, the MC heterojunction could be applied in photocatalytic conversion of biomass to valuable chemicals under ambient condition.
文摘DBUH-Br_3 catalyzed selective conversion of sulfides to sulfoxides in the presence of H_2O_2 as oxidizing agent is described.The reaction was performed selectively at room temperature and relatively short reaction times.
基金Ministry of Science and Technology of China (2005CB221405)
文摘The combination of Pt^2+, benzoquinone and NaNO2 forms an electron-transfer chain, which leads to the oxidation of methane by O2 in CF3COOH aqueous solution. The overall turnover number per hour (TOF) of methane at 120 ℃ is 0.5 h^-1, however, only about one fourth (23%) of methane is converted to the desired product of methanol in the formation of CF3COOCH3. The over-oxidation of methane to CO2, over the catalyst with the Pt^2+ species immobilized via 2,2'-bipyridyl as a ligand on the silica substrate, is depressed distinctly. Under the same conditions, the conversion to methanol dominates, and no CO2 is observed, on account of the over-oxidation of methane, as confirmed by the isotope experiment.
文摘The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.
基金supported financially by the National Natural Science Foundation of China (91545103,21103048)
文摘Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer(g-C_3N_4),was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C_3N_4 matrix and the characteristic structure of polymeric g-C_3N_4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet-visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C_3N_4 matrix as the form of Co(Ⅱ)-N bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C_3N_4 catalyst due to the synergistic effect of Co species and gC_3N_4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C_3N_4 catalysts, among which the catalyst with 9.0 wt%Co content exhibited the highest yield(9.0%) of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C_3N_4 catalysts was elaborated.