Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile...Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.展开更多
A case study was conducted in beech forests of northern Iran to determine the effect of the created gaps on some soil properties in beech stand. Changes of soil properties in small (60-150 mE), medium (151-241 mE)...A case study was conducted in beech forests of northern Iran to determine the effect of the created gaps on some soil properties in beech stand. Changes of soil properties in small (60-150 mE), medium (151-241 mE), large (242-332 m^2) and very large (333-550 m^2) gaps, as well as under closed stands were studied eight years after-the gap creation. Soil samples were taken from three depths, 0-10, 10-20 and 20-30 cm. The gaps were different from their around undisturbed stands in terms of the following soil parameters: Mg^+2 concentration of 0-10 cm at medium gap size, bulk density of 10-20 cm at very large gap size as well as K^+ and Ca^+2 concentrations at 20-30 cm at small and large gap sizes, respectively. Furthermore, the size of the gaps had no effect on soil characteristics through the whole profile. Water saturation percent (Sp %) at 0-10cm as well as P and Mg^+2 at 20--30 cm was different amongst undisturbed stands around different gap sizes. The center and the edges of the gap were different only in terms of organic carbon at the depth of 10-20 cm. Significant differences were observed between gaps and closed canopy regarding P and Ca^+2 at depth 0--10 cm and 10-20 cm, respectively. It can be concluded that applied silvicultural system for harvesting trees which created these gaps might be suitable for conservation and forest management in the region.展开更多
The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T poly...The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T polymorphism. Among these alleles, (CT)12-G, (CT)15-G, (CT)16-G, (CT)17-G, (CT)18-G and (CT)21-G have not been reported. Seventy-two single-segment substitution lines (SSSLs) carrying different alleles at the Wx locus were developed by using Huajingxian 74 with the (CT)11-G allele as a recipient and 20 accessions containing 12 different alleles at the Wx locus as donors. The estimated length of the substituted segments ranged from 2.2 to 77.3 cM with an average of 17.4 cM.展开更多
Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for...Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.展开更多
A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports a...A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.展开更多
The formation of LiOH as the discharge product instead of Li_(2)O_(2)in Li-O_(2)batteries(LOBs)is highly desirable due to the associated drawbacks of Li_(2)O_(2)-based chemistry,which involves the generation of reacti...The formation of LiOH as the discharge product instead of Li_(2)O_(2)in Li-O_(2)batteries(LOBs)is highly desirable due to the associated drawbacks of Li_(2)O_(2)-based chemistry,which involves the generation of reactive oxygen intermediates responsible for substantial side reactions.However,the current challenge lies in the formation pathway of LiOH,which typically requires the chemical hydrolysis of the hazardous LiO_(2)or Li_(2)O_(2)intermediate,posing risks to the battery components.Herein,we report a direct 4e–electrochemical approach to LiOH enabled by a single atom catalyst(SAC)consisting of CoN_(3)moieties embedded in graphene(CoN_(3)-G),while Li_(2)O_(2)is formed on the metal-free nitrogen-doped graphene(NG).The direct 4e–LiOH pathway significantly reduces the parasitic reactions,resulting in negligible damage to the electrolyte and cathode.This stands in strong contrast to the conventional 2e–Li_(2)O_(2)pathway mediated by NG and the indirect LiOH pathway by MnO_(2).Theoretical calculations further clarify that the presence of CoN_(3)sites enhances the adsorption of oxygen-containing intermediates like*OLiO and*Li_(2)O_(2),promoting the protonation of*Li_(2)O_(2)and the cleavage of the O–O bond to form LiOH.This work demonstrates a promising strategy to modulate the reaction pathways in LOBs and broadens the applications of SACs.展开更多
Single nucleotide polymorphism(SNP)armays are a powerful genotyping tool used in genetic research and genomic breeding programs.Japanese flounder(Paralichthys olivaceus)is an economically-important aquaculture flatfis...Single nucleotide polymorphism(SNP)armays are a powerful genotyping tool used in genetic research and genomic breeding programs.Japanese flounder(Paralichthys olivaceus)is an economically-important aquaculture flatfish in many countries.However,the lack of high-efficient genotyping tools has impeded the genomic breeding programs for Japanese flounder.We developed a 50K Japanese flounder SNP array,"Yuxin No.1,"and report its utility in genomic selection(GS)for disease resistance to bacterial pathogens.We screened more than 42,.2 million SNPs from the whole-genome resequencing data of 1099 individuals and selected 48697 SNPs that were evenly distributed across the genome to anchor the array with Affymetrix Axiom genotyping technology.Evaluation of the array performance with 168 fishs howed that 74.7%of the loci were successfully genotyped with high call rates(>98%)and that the poly-morphic SNPs had good cluster separations.More than 85%of the SNPs were concordant with SNPs obtained from the whole-genome resequencing data.To validate"Yuxin No.1"for GS,the arrayed geno-typing data of 27 individuals from a candidate population and 931 individuals from a reference popula-tion were used to calculate the genomic estimated breeding values(GEBVs)for disease resistance toEdwardsiella tarda.There was a 21.2%relative increase in the accuracy of GEBV using the weighted geno-mic best linear unpiased prediction(wGBLUJP),compared to traditional pedigree-based best linear unbi-ased prediction(ABLUP),suggesting good performance of the'Yuxin No.1"SNP array for GS.In summary,we developed the"Yuxin No.1"50K SNP array,which provides a useful platform for high-quality geno-typing that may be beneficial to the genomic selective breeding of Japanese flounder.展开更多
As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeli...As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.展开更多
Tomato mosaic virus (ToMV) is one of the most infectious virus diseases in tomato (Solanum lycopersicum L). The practical and effective method of controlling this disease is through genetic control by using major resi...Tomato mosaic virus (ToMV) is one of the most infectious virus diseases in tomato (Solanum lycopersicum L). The practical and effective method of controlling this disease is through genetic control by using major resistance genes. So far, three genes Tm-1, Tm-2 and Tm-22 conferring resistance to ToMV have been reported and utilized in tomato culti-var development. Marker assisted selection (MAS) has become very important and useful tool in selection of ToMV re-sistant tomato lines or hybrids. The objective of this research was to identify allele-specific PCR-based, cleaved ampli-fied polymorphic sequence (CAPS), and allele-derived single nucleotide polymorphism (SNP) markers for Tm-2 loci. Four allele-specific PCR-based markers were identified: one for Tm-2, one for Tm-22, and two for the susceptible allele tm-2. Three allele-derived CAPS markers were identified, which can identify and distinguish three alleles, tm-2, Tm-2 and Tm-22 in tomato germplasm. Three SNP markers were developed specific for Tm-2 locus. These markers will pro-vide breeders with a tool in selection of Tm-2 and Tm-22 resistance genes in tomato breeding program.展开更多
Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activit...Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activity.However,the effect of the local coordination environment of Co sites on CO_(2) reduction reaction pathways is still unclear.In this study,we investigated the CO_(2) reduction reaction pathways on Co‐N_(4) sites supported on conjugated N_(4)‐macrocyclic ligands with 1,10‐phenanthroline subunits(Co‐N_(4)‐CPY)by density functional theory calculations.The local coordination environment of single‐atom Co sites with N substituted by O(Co‐N_(3)O‐CPY)and C(Co‐N_(3)C‐CPY)was studied for comparison.The calculation results revealed that both C and O coordination break the symmetry of the primary CoN_(4) ligand field and induce charge redistribution of the Co atom.For Co‐N_(4)‐CPY,CO was confirmed to be the main product of CO_(2)RR.HCOOH is the primary product of Co‐N_(3)O‐CPY because of the greatly increased energy barrier of CO_(2) to*COOH.Although the energy barrier of CO_(2) to*COOH is reduced on Co‐N_(3)C‐CPY,the desorption process of*CO becomes more difficult.CH3OH(or CH_(4))are obtained by further*CO hydrogenation reduction when using Co‐N_(3)C‐CPY.This work provides new insight into the effect of the local coordination environment of single‐atom sites on CO_(2) reduction reaction pathways.展开更多
In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average varianc...In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.展开更多
Time and motion studies were conducted to evaluate the impact of selective cutting type on Chainsaw productivity in Caspian forests, the selective cutting performed as single and group selection cutting in the region....Time and motion studies were conducted to evaluate the impact of selective cutting type on Chainsaw productivity in Caspian forests, the selective cutting performed as single and group selection cutting in the region. The selective cutting was performed on a 42-ha tract with an average slope of 30%. The results indicate that felling time for per tree is most affected by diameter at breast height, the distance among harvested trees in single-tree selection method and diameter at breast height in group selection method. The production rate in single and group selection cutting were 21.2 m^3·h^-1 and 28.4 m^3·h^-1 for one person, respectively. Considering the gross and net production rate in single and group selection cutting, the unit cost was 1.11 USD.m^-3 and 0.88 USD.m^-3, respectively. The results indicate that group selection cutting can be more profitable than single-tree selection method.展开更多
We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method share...We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property;the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustration.展开更多
文摘Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.
文摘A case study was conducted in beech forests of northern Iran to determine the effect of the created gaps on some soil properties in beech stand. Changes of soil properties in small (60-150 mE), medium (151-241 mE), large (242-332 m^2) and very large (333-550 m^2) gaps, as well as under closed stands were studied eight years after-the gap creation. Soil samples were taken from three depths, 0-10, 10-20 and 20-30 cm. The gaps were different from their around undisturbed stands in terms of the following soil parameters: Mg^+2 concentration of 0-10 cm at medium gap size, bulk density of 10-20 cm at very large gap size as well as K^+ and Ca^+2 concentrations at 20-30 cm at small and large gap sizes, respectively. Furthermore, the size of the gaps had no effect on soil characteristics through the whole profile. Water saturation percent (Sp %) at 0-10cm as well as P and Mg^+2 at 20--30 cm was different amongst undisturbed stands around different gap sizes. The center and the edges of the gap were different only in terms of organic carbon at the depth of 10-20 cm. Significant differences were observed between gaps and closed canopy regarding P and Ca^+2 at depth 0--10 cm and 10-20 cm, respectively. It can be concluded that applied silvicultural system for harvesting trees which created these gaps might be suitable for conservation and forest management in the region.
基金supported by the key project of National Natural Science Foundation of China(30330370).
文摘The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T polymorphism. Among these alleles, (CT)12-G, (CT)15-G, (CT)16-G, (CT)17-G, (CT)18-G and (CT)21-G have not been reported. Seventy-two single-segment substitution lines (SSSLs) carrying different alleles at the Wx locus were developed by using Huajingxian 74 with the (CT)11-G allele as a recipient and 20 accessions containing 12 different alleles at the Wx locus as donors. The estimated length of the substituted segments ranged from 2.2 to 77.3 cM with an average of 17.4 cM.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074164 and 10874110)the Shanghai Leading Academic Discipline Project,China (Grant No.S30108)+1 种基金the Science and Technology Commission of Shanghai Municipality,China (Grant No.08DZ2231100)the Innovation Foundation of Shanghai Municipal Commission of Education,China (Grant No.11YZ17)
文摘Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.
基金supported by the National key research and development program of China(No.2021YFB2900401)by the National Natural Science Foundation of China(No.61861046)+1 种基金the key Natural Science Foundation of shenzhen(No.JCYJ20220818102209020)the key research and development program of shenzhen(No.ZDSYS20210623091807023)。
文摘A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.
基金the National Natural Science Foundation of China(grant no.92163116)Major Program of the Natural Science Foundation of Hunan Province(grant no.2021JC0006)the National Natural Science Foundation of China(grant no.22209043).
文摘The formation of LiOH as the discharge product instead of Li_(2)O_(2)in Li-O_(2)batteries(LOBs)is highly desirable due to the associated drawbacks of Li_(2)O_(2)-based chemistry,which involves the generation of reactive oxygen intermediates responsible for substantial side reactions.However,the current challenge lies in the formation pathway of LiOH,which typically requires the chemical hydrolysis of the hazardous LiO_(2)or Li_(2)O_(2)intermediate,posing risks to the battery components.Herein,we report a direct 4e–electrochemical approach to LiOH enabled by a single atom catalyst(SAC)consisting of CoN_(3)moieties embedded in graphene(CoN_(3)-G),while Li_(2)O_(2)is formed on the metal-free nitrogen-doped graphene(NG).The direct 4e–LiOH pathway significantly reduces the parasitic reactions,resulting in negligible damage to the electrolyte and cathode.This stands in strong contrast to the conventional 2e–Li_(2)O_(2)pathway mediated by NG and the indirect LiOH pathway by MnO_(2).Theoretical calculations further clarify that the presence of CoN_(3)sites enhances the adsorption of oxygen-containing intermediates like*OLiO and*Li_(2)O_(2),promoting the protonation of*Li_(2)O_(2)and the cleavage of the O–O bond to form LiOH.This work demonstrates a promising strategy to modulate the reaction pathways in LOBs and broadens the applications of SACs.
文摘Single nucleotide polymorphism(SNP)armays are a powerful genotyping tool used in genetic research and genomic breeding programs.Japanese flounder(Paralichthys olivaceus)is an economically-important aquaculture flatfish in many countries.However,the lack of high-efficient genotyping tools has impeded the genomic breeding programs for Japanese flounder.We developed a 50K Japanese flounder SNP array,"Yuxin No.1,"and report its utility in genomic selection(GS)for disease resistance to bacterial pathogens.We screened more than 42,.2 million SNPs from the whole-genome resequencing data of 1099 individuals and selected 48697 SNPs that were evenly distributed across the genome to anchor the array with Affymetrix Axiom genotyping technology.Evaluation of the array performance with 168 fishs howed that 74.7%of the loci were successfully genotyped with high call rates(>98%)and that the poly-morphic SNPs had good cluster separations.More than 85%of the SNPs were concordant with SNPs obtained from the whole-genome resequencing data.To validate"Yuxin No.1"for GS,the arrayed geno-typing data of 27 individuals from a candidate population and 931 individuals from a reference popula-tion were used to calculate the genomic estimated breeding values(GEBVs)for disease resistance toEdwardsiella tarda.There was a 21.2%relative increase in the accuracy of GEBV using the weighted geno-mic best linear unpiased prediction(wGBLUJP),compared to traditional pedigree-based best linear unbi-ased prediction(ABLUP),suggesting good performance of the'Yuxin No.1"SNP array for GS.In summary,we developed the"Yuxin No.1"50K SNP array,which provides a useful platform for high-quality geno-typing that may be beneficial to the genomic selective breeding of Japanese flounder.
基金supported by the National Basic Research Program of China(No.2011CB706801)the National Natural Science Foundation of China(Nos.51171089 and 51374137)the National Science and Technology Major Project(Nos.2011ZX04014-052 and 2012ZX04012-011)
文摘As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.
文摘Tomato mosaic virus (ToMV) is one of the most infectious virus diseases in tomato (Solanum lycopersicum L). The practical and effective method of controlling this disease is through genetic control by using major resistance genes. So far, three genes Tm-1, Tm-2 and Tm-22 conferring resistance to ToMV have been reported and utilized in tomato culti-var development. Marker assisted selection (MAS) has become very important and useful tool in selection of ToMV re-sistant tomato lines or hybrids. The objective of this research was to identify allele-specific PCR-based, cleaved ampli-fied polymorphic sequence (CAPS), and allele-derived single nucleotide polymorphism (SNP) markers for Tm-2 loci. Four allele-specific PCR-based markers were identified: one for Tm-2, one for Tm-22, and two for the susceptible allele tm-2. Three allele-derived CAPS markers were identified, which can identify and distinguish three alleles, tm-2, Tm-2 and Tm-22 in tomato germplasm. Three SNP markers were developed specific for Tm-2 locus. These markers will pro-vide breeders with a tool in selection of Tm-2 and Tm-22 resistance genes in tomato breeding program.
文摘Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activity.However,the effect of the local coordination environment of Co sites on CO_(2) reduction reaction pathways is still unclear.In this study,we investigated the CO_(2) reduction reaction pathways on Co‐N_(4) sites supported on conjugated N_(4)‐macrocyclic ligands with 1,10‐phenanthroline subunits(Co‐N_(4)‐CPY)by density functional theory calculations.The local coordination environment of single‐atom Co sites with N substituted by O(Co‐N_(3)O‐CPY)and C(Co‐N_(3)C‐CPY)was studied for comparison.The calculation results revealed that both C and O coordination break the symmetry of the primary CoN_(4) ligand field and induce charge redistribution of the Co atom.For Co‐N_(4)‐CPY,CO was confirmed to be the main product of CO_(2)RR.HCOOH is the primary product of Co‐N_(3)O‐CPY because of the greatly increased energy barrier of CO_(2) to*COOH.Although the energy barrier of CO_(2) to*COOH is reduced on Co‐N_(3)C‐CPY,the desorption process of*CO becomes more difficult.CH3OH(or CH_(4))are obtained by further*CO hydrogenation reduction when using Co‐N_(3)C‐CPY.This work provides new insight into the effect of the local coordination environment of single‐atom sites on CO_(2) reduction reaction pathways.
文摘In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.
文摘Time and motion studies were conducted to evaluate the impact of selective cutting type on Chainsaw productivity in Caspian forests, the selective cutting performed as single and group selection cutting in the region. The selective cutting was performed on a 42-ha tract with an average slope of 30%. The results indicate that felling time for per tree is most affected by diameter at breast height, the distance among harvested trees in single-tree selection method and diameter at breast height in group selection method. The production rate in single and group selection cutting were 21.2 m^3·h^-1 and 28.4 m^3·h^-1 for one person, respectively. Considering the gross and net production rate in single and group selection cutting, the unit cost was 1.11 USD.m^-3 and 0.88 USD.m^-3, respectively. The results indicate that group selection cutting can be more profitable than single-tree selection method.
文摘We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property;the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustration.