This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intric...The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. .展开更多
In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.T...In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors.展开更多
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ...The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.展开更多
A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selectiv...A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selective laser melting(SLM).The influence of particle size on the powder-to-laser absorptivity and underlying absorption behavior was investigated.An intrinsic relationship between the absorption,distribution of absorbed irradiance within the powder layers,and surface morphology and geometric characteristics(e.g.,contact angle,width and height of tracks,and remelted depth)of the laser scanning tracks is presented here.Simulation conclusions indicate that the absorptivity of the powder layers considerably exceeds the single powder particle value or the dense solid material value.With an increase in particle size,the powder layer absorbs less laser energy.The maximum absorptivity of theWpowder layers reached 0.6030 at the particle size of 5 lm.The distribution of laser irradiance on the particle surface was sensitive to particle size,azimuthal angle,and the position of the powder particles on the substrate.The maximum irradiance in the powder layers decreased from 1.117×10^–3 to 0.85×10^–3W·μm^-2 and the contour of the irradiance distribution in the center of the irradiated area gradually contracted when the particle size increased from 5 to 45 lm.An experimental study on the surface morphologies and cross-sectional geometric characteristics of SLM-fabricated W material was performed,and the experimental results validated the mechanisms of the powder-to-laser-absorption behavior that were obtained in simulations.This work provides a scientific basis for the application of the ray-tracing model to predict the wetting and spreading ability of melted tracks during SLM additive manufacturing in order to yield a sound laser processability.展开更多
The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degrea...The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degreasing for the metal matrix are used to increase bond strength. However, the metal matrix of PFM processed by selective laser melting(SLM) has natural rough surface. To explore the effect of the original roughness on metal-ceramic bond strength, two groups of specimen are fabricated by SLM. One group of specimen surface is polished smooth while another group remains the original rough surface. The dental porcelain is fused to the specimens' surfaces according to the ISO 9693:1999 standard. To gain the bond strength, a three-point bending test is carried out and X ray energy spectrum analysis(EDS), scanning electron microscope(SEM) are used to show fracture mode. The results show that the mean bond strength is 116.5 16 MPa of the group with rough surface(Ra= 17.2), and the fracture mode is cohesive. However, when the surface is smooth (Ra =3.8), the mean bond strength is 74.5 MPa _+ 5 MPa and the fracture mode is mixed. The original surface with prominent structures formed by the partly melted powder particles, not only increases surface roughness but also significantly improves the bond strength by forming strong mechanical lock effect. Statistical analysis (Student's t-test) demonstrates a significant difference (p〈0.05) of the mean value of bond strength between the two groups. The experiments indicate the natural rough surface can enhance the metal-ceramic bond strength to over four times the minimum value (25 MPa) of the ISO 9693:1999 standard. It is found that the natural rough surface of SLM-made PFM can eliminate the porcelain collapse defect produced by traditional casting method in PFM restorations.展开更多
Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM ...Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.展开更多
Different graphene oxide(GO)contents were chosen as the addition to prepare ZK30-xGO composites by selective laser melting(SLM).The microstructure and biodegradation of the SLMed ZK30-xGO composites were investigated....Different graphene oxide(GO)contents were chosen as the addition to prepare ZK30-xGO composites by selective laser melting(SLM).The microstructure and biodegradation of the SLMed ZK30-xGO composites were investigated.The results indicated that(i)SLM effectively produced a small grain size,(ii)the incorporation of GO into ZK30 caused a further decrease in grain size,and(iii)GO has a strong effect on the formation of the MgZn2 precipitates.The SLMed ZK30-0.6GO had the lowest biodegradation rate,which is attributed to the fact that the effect of the increased grain refinement and decreased amount of the MgZn?precipitates counteracted the effect of the increased GO content on the biodegradation rate.Furthermore,the SLMed ZK30-xGO composites had good cytocompatibility.This work provided a novel approach to the composition design and fabrication of novel biodegradable GO reinforced Mg-based biomedical implants.展开更多
Taking Ti6Al4V titanium alloy powder as the research object,on the basis of single layer scanning and single channel scanning experiment,this paper studies the influence of selective laser melting(SLM)process paramete...Taking Ti6Al4V titanium alloy powder as the research object,on the basis of single layer scanning and single channel scanning experiment,this paper studies the influence of selective laser melting(SLM)process parameters on Ti6Al4V alloy material formability,and block forming experiment is carried out.Through the design of orthogonal experiment,morphology observation of sample and density analysis,results show that the best block molding parameters of SLM technology in Ti6Al4V alloy powder are laser power of 400 W,lap rate of 1 and the scanning speed of 750 mm/min,density can up to 96.17%.展开更多
A comparative study on the influence of different manufacturing methods(selective laser melting and hot rolling)on the microstructure,mechanical and thermal behaviours of tungsten(W)was presented for the first time.Th...A comparative study on the influence of different manufacturing methods(selective laser melting and hot rolling)on the microstructure,mechanical and thermal behaviours of tungsten(W)was presented for the first time.The results indicated that the selective laser melting(SLM)W exhibited a finer grain sizes,a lower strength ductility,hardness and thermal conductivity compared to hot-rolled W.The main reason for this result was that the laser underwent rapid heating and cooling when it was used to melt W powder with high energy density,resulting in large internal stress in the sample after manufacturing.Subsequently,the internal stress was released,leading to the generation of microcracks at the grain boundaries,thereby affecting the performance of SLM W samples.In addition,the higher fraction of high-angle grain boundaries(HAGBs)of SLM W was found to be the key factor for intrinsic brittleness.Because the HAGBs are the preferred crack paths,which could promote crack propagation and decrease fracture energy.展开更多
Inconel 718 alloys were fabricated by selective laser melting under different scanning speeds to investigate the change of the morphology of molten pool,direction of grain growth,and tensile properties.Results show th...Inconel 718 alloys were fabricated by selective laser melting under different scanning speeds to investigate the change of the morphology of molten pool,direction of grain growth,and tensile properties.Results show that as the scanning speed increases from 1,000 to 1,450 mm·s^(-1),the ratio between depth and width of molten pool increases,yet their overlapping regimes decrease.Meanwhile,increasing scanning speed can promote the solidified structure evolve from cell to columnar dendrites,and decrease the dendrite spacing from 0.54 to 0.39 μm;the average columnar grain size also decreases from 84.42 to 73.51 μm.At different scanning speeds,the preferred orientation of grains along the building is mainly <001> direction.In addition,the tensile properties of samples under different scanning speeds present a non-monotonic transition.The maximum ultimate tensile strength and elongation can reach 1,014±19 MPa and 19.04±1.12 (%),respectively,at the scanning speed of 1,300 mm·s^(-1).展开更多
Successful regeneration of tissues and organs relies on the application of suitable substrates or scaffolds in scaffold-based regenerative medicine. In this study, Ti-6Al-4V alloy films (Ti alloy film) were produced u...Successful regeneration of tissues and organs relies on the application of suitable substrates or scaffolds in scaffold-based regenerative medicine. In this study, Ti-6Al-4V alloy films (Ti alloy film) were produced using a three-dimensional printing technique called Selective Laser Melting (SLM), which is one of the metal additive manufacturing techniques. The thickness of produced Ti alloy film was approximately 250 μm. The laser-irradiated surface of Ti alloy film had a relatively smooth yet porous surface. The non-irradiated surface was also porous but also retained a lot of partially melted Ti-6Al-4V powder. Cell proliferation ability of mouse fibroblast-like cells (L929 cells) and mouse osteoblast-like cells (MC3T3-E1 cells) on both the surfaces of Ti alloy film was examined using WST assay. Both L929 and MC3T3-E1 cells underwent cell proliferation during the culture period. These results indicate that selective laser melting is suitable for producing a cell-compatible Ti-6Al-4V alloy film for biomaterials applications.展开更多
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
文摘The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. .
基金The work presented in this paper was fully supported by the following projects:National Natural Science Foundation of China(51775196)Guangdong Province Science and Technology Project(2017B090912003)+3 种基金High-level Personnel Special Support Plan of Guangdong Province(2016TQ03X289)The Fundamental Research Funds for the Central Universities(Project No.2018ZD30)Guangdong Province Science and Technology Project(2017B090911014)Guangzhou Science and Technology Project(201704030097)。
文摘In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors.
基金Project (51275179) supported by the National Natural Science Foundation of ChinaProject (2010A090200072) supported by Industry,University and Research Institute Combination of Ministry of Education, Ministry of Science and Technology and Guangdong Province,China+1 种基金Project (2012M511797) supported by China Postdoctoral Science FoundationProject (2012ZB0014) supported by FundamentalResearch Funds for the Central Universities of China
文摘The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.
文摘A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selective laser melting(SLM).The influence of particle size on the powder-to-laser absorptivity and underlying absorption behavior was investigated.An intrinsic relationship between the absorption,distribution of absorbed irradiance within the powder layers,and surface morphology and geometric characteristics(e.g.,contact angle,width and height of tracks,and remelted depth)of the laser scanning tracks is presented here.Simulation conclusions indicate that the absorptivity of the powder layers considerably exceeds the single powder particle value or the dense solid material value.With an increase in particle size,the powder layer absorbs less laser energy.The maximum absorptivity of theWpowder layers reached 0.6030 at the particle size of 5 lm.The distribution of laser irradiance on the particle surface was sensitive to particle size,azimuthal angle,and the position of the powder particles on the substrate.The maximum irradiance in the powder layers decreased from 1.117×10^–3 to 0.85×10^–3W·μm^-2 and the contour of the irradiance distribution in the center of the irradiated area gradually contracted when the particle size increased from 5 to 45 lm.An experimental study on the surface morphologies and cross-sectional geometric characteristics of SLM-fabricated W material was performed,and the experimental results validated the mechanisms of the powder-to-laser-absorption behavior that were obtained in simulations.This work provides a scientific basis for the application of the ray-tracing model to predict the wetting and spreading ability of melted tracks during SLM additive manufacturing in order to yield a sound laser processability.
基金supported by the Royal Academy of Engineering Research Exchanges with China and UK(Grant No.2012-P02)National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2012BAF08B03)National Natural Science Foundation of China(Grant No.51375189)
文摘The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degreasing for the metal matrix are used to increase bond strength. However, the metal matrix of PFM processed by selective laser melting(SLM) has natural rough surface. To explore the effect of the original roughness on metal-ceramic bond strength, two groups of specimen are fabricated by SLM. One group of specimen surface is polished smooth while another group remains the original rough surface. The dental porcelain is fused to the specimens' surfaces according to the ISO 9693:1999 standard. To gain the bond strength, a three-point bending test is carried out and X ray energy spectrum analysis(EDS), scanning electron microscope(SEM) are used to show fracture mode. The results show that the mean bond strength is 116.5 16 MPa of the group with rough surface(Ra= 17.2), and the fracture mode is cohesive. However, when the surface is smooth (Ra =3.8), the mean bond strength is 74.5 MPa _+ 5 MPa and the fracture mode is mixed. The original surface with prominent structures formed by the partly melted powder particles, not only increases surface roughness but also significantly improves the bond strength by forming strong mechanical lock effect. Statistical analysis (Student's t-test) demonstrates a significant difference (p〈0.05) of the mean value of bond strength between the two groups. The experiments indicate the natural rough surface can enhance the metal-ceramic bond strength to over four times the minimum value (25 MPa) of the ISO 9693:1999 standard. It is found that the natural rough surface of SLM-made PFM can eliminate the porcelain collapse defect produced by traditional casting method in PFM restorations.
基金financially supported by the KGW Program(Grant No.2019XXX.XX4007Tm)the National Natural Science Foundation of China(Grant Nos.51905188,52090042 and 51775205)。
文摘Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.
基金Natural Science Foundation of China(No.51874368).
文摘Different graphene oxide(GO)contents were chosen as the addition to prepare ZK30-xGO composites by selective laser melting(SLM).The microstructure and biodegradation of the SLMed ZK30-xGO composites were investigated.The results indicated that(i)SLM effectively produced a small grain size,(ii)the incorporation of GO into ZK30 caused a further decrease in grain size,and(iii)GO has a strong effect on the formation of the MgZn2 precipitates.The SLMed ZK30-0.6GO had the lowest biodegradation rate,which is attributed to the fact that the effect of the increased grain refinement and decreased amount of the MgZn?precipitates counteracted the effect of the increased GO content on the biodegradation rate.Furthermore,the SLMed ZK30-xGO composites had good cytocompatibility.This work provided a novel approach to the composition design and fabrication of novel biodegradable GO reinforced Mg-based biomedical implants.
文摘Taking Ti6Al4V titanium alloy powder as the research object,on the basis of single layer scanning and single channel scanning experiment,this paper studies the influence of selective laser melting(SLM)process parameters on Ti6Al4V alloy material formability,and block forming experiment is carried out.Through the design of orthogonal experiment,morphology observation of sample and density analysis,results show that the best block molding parameters of SLM technology in Ti6Al4V alloy powder are laser power of 400 W,lap rate of 1 and the scanning speed of 750 mm/min,density can up to 96.17%.
基金National Natural Science Foundation of China(Grant No.U1808216)Hubei Provincial Natural Science Foundation of China(Grant No.2020CFB667)+2 种基金Hubei Provincial Key Research and Development Program of China(Grant No.2020BAB045)Wuhan Second Ship Design and Research Institute(No.YT19201903)the Sixth China Association of Science and Technology Youth Talents Invitation Project(No.YESS20200326).
文摘A comparative study on the influence of different manufacturing methods(selective laser melting and hot rolling)on the microstructure,mechanical and thermal behaviours of tungsten(W)was presented for the first time.The results indicated that the selective laser melting(SLM)W exhibited a finer grain sizes,a lower strength ductility,hardness and thermal conductivity compared to hot-rolled W.The main reason for this result was that the laser underwent rapid heating and cooling when it was used to melt W powder with high energy density,resulting in large internal stress in the sample after manufacturing.Subsequently,the internal stress was released,leading to the generation of microcracks at the grain boundaries,thereby affecting the performance of SLM W samples.In addition,the higher fraction of high-angle grain boundaries(HAGBs)of SLM W was found to be the key factor for intrinsic brittleness.Because the HAGBs are the preferred crack paths,which could promote crack propagation and decrease fracture energy.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51425402 and 51501048)。
文摘Inconel 718 alloys were fabricated by selective laser melting under different scanning speeds to investigate the change of the morphology of molten pool,direction of grain growth,and tensile properties.Results show that as the scanning speed increases from 1,000 to 1,450 mm·s^(-1),the ratio between depth and width of molten pool increases,yet their overlapping regimes decrease.Meanwhile,increasing scanning speed can promote the solidified structure evolve from cell to columnar dendrites,and decrease the dendrite spacing from 0.54 to 0.39 μm;the average columnar grain size also decreases from 84.42 to 73.51 μm.At different scanning speeds,the preferred orientation of grains along the building is mainly <001> direction.In addition,the tensile properties of samples under different scanning speeds present a non-monotonic transition.The maximum ultimate tensile strength and elongation can reach 1,014±19 MPa and 19.04±1.12 (%),respectively,at the scanning speed of 1,300 mm·s^(-1).
文摘Successful regeneration of tissues and organs relies on the application of suitable substrates or scaffolds in scaffold-based regenerative medicine. In this study, Ti-6Al-4V alloy films (Ti alloy film) were produced using a three-dimensional printing technique called Selective Laser Melting (SLM), which is one of the metal additive manufacturing techniques. The thickness of produced Ti alloy film was approximately 250 μm. The laser-irradiated surface of Ti alloy film had a relatively smooth yet porous surface. The non-irradiated surface was also porous but also retained a lot of partially melted Ti-6Al-4V powder. Cell proliferation ability of mouse fibroblast-like cells (L929 cells) and mouse osteoblast-like cells (MC3T3-E1 cells) on both the surfaces of Ti alloy film was examined using WST assay. Both L929 and MC3T3-E1 cells underwent cell proliferation during the culture period. These results indicate that selective laser melting is suitable for producing a cell-compatible Ti-6Al-4V alloy film for biomaterials applications.