The results of studying the interaction of H2 and O2 with Pt-, Ru- and Pt-Ru catalysts supported on 2% Ce/(θ+α)-AlEO3, at varying the ratios and concentrations of supported elements by using the temperature-progr...The results of studying the interaction of H2 and O2 with Pt-, Ru- and Pt-Ru catalysts supported on 2% Ce/(θ+α)-AlEO3, at varying the ratios and concentrations of supported elements by using the temperature-programmed desorption method are presented. It has been shown that HE is adsorbed as four forms, differing in the structure, temperature, order and activation energy of desorption: HEads, HE+ads, Hads, Hat (Tdes 〉 873 K). The relationship of activity and selectivity of Pt-Ru catalysts with the presence of active centers able to adsorb atomic hydrogen with desorption energy (Edes) = 60-70 kJ/mol in the catalytic oxidation of methane was determined. It was found that the O2 adsorbed as two forms differing in the structure, temperature and activation energy of desorption. It has been determined that changing the atomic ratio of elements in the catalysts significantly affect on the adsorption Of OE. The introduction of ruthenium into the platinum catalyst increases the oxygen adsorption; and the surface is stabilized in a homogeneous state. Quantum chemical calculations of the activation of C-H bonds in a molecule of methane on Ru,,Pt, (m + n = 4) clusters have been carried out.展开更多
文摘The results of studying the interaction of H2 and O2 with Pt-, Ru- and Pt-Ru catalysts supported on 2% Ce/(θ+α)-AlEO3, at varying the ratios and concentrations of supported elements by using the temperature-programmed desorption method are presented. It has been shown that HE is adsorbed as four forms, differing in the structure, temperature, order and activation energy of desorption: HEads, HE+ads, Hads, Hat (Tdes 〉 873 K). The relationship of activity and selectivity of Pt-Ru catalysts with the presence of active centers able to adsorb atomic hydrogen with desorption energy (Edes) = 60-70 kJ/mol in the catalytic oxidation of methane was determined. It was found that the O2 adsorbed as two forms differing in the structure, temperature and activation energy of desorption. It has been determined that changing the atomic ratio of elements in the catalysts significantly affect on the adsorption Of OE. The introduction of ruthenium into the platinum catalyst increases the oxygen adsorption; and the surface is stabilized in a homogeneous state. Quantum chemical calculations of the activation of C-H bonds in a molecule of methane on Ru,,Pt, (m + n = 4) clusters have been carried out.