In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti...In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.展开更多
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c...A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.展开更多
We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux...We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux. Here we will discuss properties of these galaxies and show that both subsets are very similar in the multi wavelength view. Furthermore, we will discuss differences between the two subsets and their implications for a Unified Model of AGN.展开更多
This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in si...This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in situ Ti-TiB composite materials produced by selective laser melting (SLM) technology. Starting powder composite system was prepared by mixing 95 wt% commercially pure titanium (CP-Ti) and 5 wt% titanium diboride (TiB2) powders and subsequently milled for two different times (i.e. 2 h and 4 h). The milled powder mixtures after 2 h and 4 h show nearly spherical and irregular shape, respectively. Subsequently, the resultant Ti-5 wt% TiB2 powder mixtures were used for SLM processing. Scanning electron microscopy image of the SLM-processed Ti-TiB composite samples show needle-shape TiB phase distributed across the Ti matrix, which is the product of an in-situ chemical reaction between Ti and TiB2 during SLM. The Ti-TiB composite samples prepared from 2 h and 4 h milled Ti-TiB2 powders show different relative densities of 99.5% and 95.1%, respectively. Also, the compression properties such as ultimate strength and compression strain for the 99.5% dense composite samples is 1421 MPa and 17.8%, respectively, which are superior to those (883 MPa and 5.5%, respectively) for the 95.1% dense sample. The results indicate that once Ti and TiB2 powders are connected firmly to each other and powder mixture of nearly spherical shape is obtained, there is no additional benefit in increasing the milling time and, instead, it has a negative effect on the density (i.e. increasing porosity level) of the Ti-TiB composite materials and their mechanical properties.展开更多
In statistics and machine learning communities, the last fifteen years have witnessed a surge of high-dimensional models backed by penalized methods and other state-of-the-art variable selection techniques.The high-di...In statistics and machine learning communities, the last fifteen years have witnessed a surge of high-dimensional models backed by penalized methods and other state-of-the-art variable selection techniques.The high-dimensional models we refer to differ from conventional models in that the number of all parameters p and number of significant parameters s are both allowed to grow with the sample size T. When the field-specific knowledge is preliminary and in view of recent and potential affluence of data from genetics, finance and on-line social networks, etc., such(s, T, p)-triply diverging models enjoy ultimate flexibility in terms of modeling, and they can be used as a data-guided first step of investigation. However, model selection consistency and other theoretical properties were addressed only for independent data, leaving time series largely uncovered. On a simple linear regression model endowed with a weakly dependent sequence, this paper applies a penalized least squares(PLS) approach. Under regularity conditions, we show sign consistency, derive finite sample bound with high probability for estimation error, and prove that PLS estimate is consistent in L_2 norm with rate (s log s/T)~1/2.展开更多
文摘In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.
基金supported by the National Basic Research Program of China (973 Program,2013CB934104)the China Postdoctoral Science Foundation(2014M560202)~~
文摘A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.
文摘We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux. Here we will discuss properties of these galaxies and show that both subsets are very similar in the multi wavelength view. Furthermore, we will discuss differences between the two subsets and their implications for a Unified Model of AGN.
基金supported by the Australian Research Council’s Projects Funding Scheme (No. DP110101653)the European Commission (BioTiNet-ITN G.A. No.264635)the Deutsche Forschungsgemeinschaft (SFB/Transregio 79, Project M1)
文摘This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in situ Ti-TiB composite materials produced by selective laser melting (SLM) technology. Starting powder composite system was prepared by mixing 95 wt% commercially pure titanium (CP-Ti) and 5 wt% titanium diboride (TiB2) powders and subsequently milled for two different times (i.e. 2 h and 4 h). The milled powder mixtures after 2 h and 4 h show nearly spherical and irregular shape, respectively. Subsequently, the resultant Ti-5 wt% TiB2 powder mixtures were used for SLM processing. Scanning electron microscopy image of the SLM-processed Ti-TiB composite samples show needle-shape TiB phase distributed across the Ti matrix, which is the product of an in-situ chemical reaction between Ti and TiB2 during SLM. The Ti-TiB composite samples prepared from 2 h and 4 h milled Ti-TiB2 powders show different relative densities of 99.5% and 95.1%, respectively. Also, the compression properties such as ultimate strength and compression strain for the 99.5% dense composite samples is 1421 MPa and 17.8%, respectively, which are superior to those (883 MPa and 5.5%, respectively) for the 95.1% dense sample. The results indicate that once Ti and TiB2 powders are connected firmly to each other and powder mixture of nearly spherical shape is obtained, there is no additional benefit in increasing the milling time and, instead, it has a negative effect on the density (i.e. increasing porosity level) of the Ti-TiB composite materials and their mechanical properties.
基金supported by Natural Science Foundation of USA (Grant Nos. DMS1206464 and DMS1613338)National Institutes of Health of USA (Grant Nos. R01GM072611, R01GM100474 and R01GM120507)
文摘In statistics and machine learning communities, the last fifteen years have witnessed a surge of high-dimensional models backed by penalized methods and other state-of-the-art variable selection techniques.The high-dimensional models we refer to differ from conventional models in that the number of all parameters p and number of significant parameters s are both allowed to grow with the sample size T. When the field-specific knowledge is preliminary and in view of recent and potential affluence of data from genetics, finance and on-line social networks, etc., such(s, T, p)-triply diverging models enjoy ultimate flexibility in terms of modeling, and they can be used as a data-guided first step of investigation. However, model selection consistency and other theoretical properties were addressed only for independent data, leaving time series largely uncovered. On a simple linear regression model endowed with a weakly dependent sequence, this paper applies a penalized least squares(PLS) approach. Under regularity conditions, we show sign consistency, derive finite sample bound with high probability for estimation error, and prove that PLS estimate is consistent in L_2 norm with rate (s log s/T)~1/2.