The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found th...The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.展开更多
Selective semi-hydrogenation of phenylacetylene to styrene is a crucial step in the polystyrene industry.Although Pd-based catalysts are widely used in this reaction due to their excellent hydrogenation activity,the s...Selective semi-hydrogenation of phenylacetylene to styrene is a crucial step in the polystyrene industry.Although Pd-based catalysts are widely used in this reaction due to their excellent hydrogenation activity,the selectivity for styrene remains a great challenge.Herein,we designed a mesoporous silica stabilized Pd-Ru@ZIF-8(MS Pd-Ru@ZIF-8)nanoreactor with novel Pd and Ru single site synergistic catalytical system for semi-hydrogenation of phenylacetylene.The nanoreactor exhibited a superior performance,achieving 98%conversion of phenylacetylene and 96%selectivity to styrene.Turnover frequency(TOF)of nanoreactor was up to as high as 2,188 h^(−1),which was 25 times and 5 times more than the single metal species catalysts,mesoporous silica stabilized Pd@ZIF-8 nanoreactor(MS Pd@ZIF-8),and mesoporous silica stabilized Ru@ZIF-8 nanoreactor(MS Ru@ZIF-8).This catalytic activity was attributed to the synergistic effect of Pd and Ru single site anchored strongly into the framework of ZIF-8,which reduced the desorption energy of styrene and increased the hydrogenation energy barrier of styrene.Importantly,since the ordered mesoporous silica was introduced into the nanoreactor shell to stabilize ZIF-8,MS Pd-Ru@ZIF-8 showed excellent reusability and stability.After the five cycles,the catalytical activity and selectivity still remained.This work provides insights for a synergistic catalytic system based on single-site active sites for selective hydrogenation reactions.展开更多
Although precious transition metals such as palladium,platinum,and iridium are widely used in hydrogenation reactions,the earth-abundant transition metal-catalyzed highly selective semi-hydrogenation of terminal alkyn...Although precious transition metals such as palladium,platinum,and iridium are widely used in hydrogenation reactions,the earth-abundant transition metal-catalyzed highly selective semi-hydrogenation of terminal alkynes to terminal alkenes remains poorly developed and a challenge.Herein we demonstrate the excellent selective,cost-effective semi-hydrogenation of terminal alkynes via a novel graphene encapsulated Ni@N/C catalyst.The graphene layer encapsulated nano-catalyst Ni@N/C could significantly avoid metal leaching and improve the stability of the catalyst.The strong interaction of nitrogen with the Ni nanoparticles regulates the activity of Ni towards selective semi-hydrogenation of terminal alkynes.Substrates having un-functionalized as well as functionalized substituents,and substrates having sensitive functional groups(olefins,ketones)which pose a challenge to hydrogenate,were semi-hydrogenated with excellent conversion(up to 99%)and selectivity(up to 99%)under optimized reaction conditions.展开更多
The heterogeneity of active sites is the main obstacle for selectivity control in heterogeneous catalysis.Single atom catalysts(SACs) with homogeneous isolated active sites are highly desired in chemoselective trans...The heterogeneity of active sites is the main obstacle for selectivity control in heterogeneous catalysis.Single atom catalysts(SACs) with homogeneous isolated active sites are highly desired in chemoselective transformations. In this work, a Pd1/ZnO catalyst with single‐atom dispersion of Pd active sites was achieved by decreasing the Pd loading and reducing the sample at a relatively low temperature. The Pd1/ZnO SAC exhibited excellent catalytic performance in the chemoselective hydrogenation of acetylene with comparable chemoselectivity to that of PdZn intermetallic catalysts and a greatly enhanced utilization of Pd metal. Such unusual behaviors of the Pd1/ZnO SAC in acetylene semi‐hydrogenation were ascribed to the high‐valent single Pd active sites, which could promote electrostatic interactions with acetylene but restrain undesired ethylene hydrogenation via the spatial restrictions of σ‐chemical bonding toward ethylene.展开更多
Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos...Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.展开更多
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural...The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.展开更多
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst...Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ...Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.展开更多
BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of ...BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of selective his bundle pacing(SHBP)that eliminated crochetage sign in a patient with ostium secundum ASD.CASE SUMMARY A 77-year-old man was admitted with a 2-year history of chest tightness and shortness of breath.Transthoracic echocardiography revealed an ostium secundum ASD.Twelve-lead electrocardiogram revealed atrial fibrillation with a prolonged relative risk interval,incomplete right bundle branch block,and crochetage sign.The patient was diagnosed with an ostium secundum ASD,atrial fibrillation with a second-degree atrioventricular block,and heart failure.The patient was treated with selective his bundle pacemaker implantation.After the procedure,crochetage sign disappeared during his bundle pacing on the electrocardiogram.CONCLUSION S-HBP eliminated crochetage sign on electrocardiogram.Crochetage sign may be a manifestation of a conduction system disorder.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
The semi-hydrogenation of alkyne to form Z-olefins with high conversion and high selectivity is still a huge challenge in the chemical industry.Moreover,flammable and explosive hydrogen as the common hydrogen source o...The semi-hydrogenation of alkyne to form Z-olefins with high conversion and high selectivity is still a huge challenge in the chemical industry.Moreover,flammable and explosive hydrogen as the common hydrogen source of this reaction increases the cost and danger of industrial production.Herein,we connect the photocatalytic hydrogen evolution reaction and the semihydrogenation reaction of alkynes in series and successfully realize the high selective production of Z-alkenes using low-cost,safe,and green water as the proton source.Before the cascade reaction,a series of isomorphic metal–organic cage catalysts(Co_(x)Zn_(8−x)L_(6),x=0,3,4,5,and 8)are designed and synthesized to improve the yield of the photocatalytic hydrogen production.Among them,Co_(5)Zn_(3)L_(6) shows the highest photocatalytic activity,with a H_(2) generation rate of 8.81 mmol g^(−1) h^(−1).Then,Co_(5)Zn_(3)L_(6) is further applied in the above tandem reaction to efficiently reduce alkynes to Z-alkenes under ambient conditions,which can reach high conversion of>98%and high selectivity of>99%,and maintain original catalytic activity after multiple cycles.This“one-pot”tandem reaction can achieve a highly selective and safe stepwise conversion from water into hydrogen into Z-olefins under mild reaction conditions.展开更多
The selective removal of trace acetylene in ethylene feed gas is of great significance in the petrochemicalindustry;however, there are still challenges in designing and developing high-performance catalysts. Here, a M...The selective removal of trace acetylene in ethylene feed gas is of great significance in the petrochemicalindustry;however, there are still challenges in designing and developing high-performance catalysts. Here, a MOFassistedencapsulation strategy was adopted for the precise synthesis of diatomic Pd2 sites on a ZnO support. When usedfor the acetylene semi-hydrogenation reaction, the dual-atom Pd2-ZnO catalyst exhibited improved catalytic performance,achieving complete conversion of acetylene at 125 °C with an 89% selectivity to ethene, as compared to Pd single-atom andnanoparticles. This enhancement was mainly attributed to the catalyst’s ability to dissociate H2 and facilitate the desorptionof intermediate C2H4. Moreover, the strong interaction between the support and the diatomic Pd sites was responsible for thecatalyst’s excellent stability during the long-term reaction.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th...A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.展开更多
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-...Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.展开更多
A common feature among neurodegenerative conditions is that ce rtain neuronal populations are selectively vulnerable to loss(Fu et al.,2018).By corollary,other neurons are selectively resilient,suggesting they may pos...A common feature among neurodegenerative conditions is that ce rtain neuronal populations are selectively vulnerable to loss(Fu et al.,2018).By corollary,other neurons are selectively resilient,suggesting they may possess unique features that support their survival.U nderstanding the basis of neuronal resilience or vulnerability would provide a logical strategy to identify factors that could be targeted therapeutically.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51404302)the Natural Science Foundation of Hunan Province,China(Nos.2020JJ4732,2022JJ30897)the Natural Science Foundation of Changsha City,China(No.kq2202430).
文摘The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.
基金the financial support from the Beijing Natural Science Foundation(No.2182061)Science Foundation of China University of Petroleum,Beijing(No.2462019BJRC001)。
文摘Selective semi-hydrogenation of phenylacetylene to styrene is a crucial step in the polystyrene industry.Although Pd-based catalysts are widely used in this reaction due to their excellent hydrogenation activity,the selectivity for styrene remains a great challenge.Herein,we designed a mesoporous silica stabilized Pd-Ru@ZIF-8(MS Pd-Ru@ZIF-8)nanoreactor with novel Pd and Ru single site synergistic catalytical system for semi-hydrogenation of phenylacetylene.The nanoreactor exhibited a superior performance,achieving 98%conversion of phenylacetylene and 96%selectivity to styrene.Turnover frequency(TOF)of nanoreactor was up to as high as 2,188 h^(−1),which was 25 times and 5 times more than the single metal species catalysts,mesoporous silica stabilized Pd@ZIF-8 nanoreactor(MS Pd@ZIF-8),and mesoporous silica stabilized Ru@ZIF-8 nanoreactor(MS Ru@ZIF-8).This catalytic activity was attributed to the synergistic effect of Pd and Ru single site anchored strongly into the framework of ZIF-8,which reduced the desorption energy of styrene and increased the hydrogenation energy barrier of styrene.Importantly,since the ordered mesoporous silica was introduced into the nanoreactor shell to stabilize ZIF-8,MS Pd-Ru@ZIF-8 showed excellent reusability and stability.After the five cycles,the catalytical activity and selectivity still remained.This work provides insights for a synergistic catalytic system based on single-site active sites for selective hydrogenation reactions.
基金supported financially by the National Natural Science Foundation of China(Project 51976225).
文摘Although precious transition metals such as palladium,platinum,and iridium are widely used in hydrogenation reactions,the earth-abundant transition metal-catalyzed highly selective semi-hydrogenation of terminal alkynes to terminal alkenes remains poorly developed and a challenge.Herein we demonstrate the excellent selective,cost-effective semi-hydrogenation of terminal alkynes via a novel graphene encapsulated Ni@N/C catalyst.The graphene layer encapsulated nano-catalyst Ni@N/C could significantly avoid metal leaching and improve the stability of the catalyst.The strong interaction of nitrogen with the Ni nanoparticles regulates the activity of Ni towards selective semi-hydrogenation of terminal alkynes.Substrates having un-functionalized as well as functionalized substituents,and substrates having sensitive functional groups(olefins,ketones)which pose a challenge to hydrogenate,were semi-hydrogenated with excellent conversion(up to 99%)and selectivity(up to 99%)under optimized reaction conditions.
基金supported by the National Natural Science Foundation of China(21573232)~~
文摘The heterogeneity of active sites is the main obstacle for selectivity control in heterogeneous catalysis.Single atom catalysts(SACs) with homogeneous isolated active sites are highly desired in chemoselective transformations. In this work, a Pd1/ZnO catalyst with single‐atom dispersion of Pd active sites was achieved by decreasing the Pd loading and reducing the sample at a relatively low temperature. The Pd1/ZnO SAC exhibited excellent catalytic performance in the chemoselective hydrogenation of acetylene with comparable chemoselectivity to that of PdZn intermetallic catalysts and a greatly enhanced utilization of Pd metal. Such unusual behaviors of the Pd1/ZnO SAC in acetylene semi‐hydrogenation were ascribed to the high‐valent single Pd active sites, which could promote electrostatic interactions with acetylene but restrain undesired ethylene hydrogenation via the spatial restrictions of σ‐chemical bonding toward ethylene.
基金supported by the National Nature Science Foundation of China (32222058, 32001274)the Youth Talent Support Program for Science & Technology Innovation of National Forestry and Grassland (2019132603) for financial support。
文摘Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.
基金supported by Program for National Natural Science Foundation of China(Nos.22178135,21978104 and 22278419)the National Key Research and Development Program of China(No.2021YFC2101601)。
文摘The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.
基金the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+2 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2023JJA120098)the Guangxi Key Laboratory of Green Chemical Materials and Safety Technology,the Beibu Gulf University(2022SYSZZ02,2022ZZKT04)the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)。
文摘Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(22209047,U21A2081,22075074)+2 种基金Natural Science Foundation of Hunan Province(2020JJ5035)Hunan Provincial Department of Education Outstanding Youth Project(23B0037)Macao Science and Technology Development Fund(Macao SAR,FDCT-0096/2020/A2).
文摘Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.
文摘BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of selective his bundle pacing(SHBP)that eliminated crochetage sign in a patient with ostium secundum ASD.CASE SUMMARY A 77-year-old man was admitted with a 2-year history of chest tightness and shortness of breath.Transthoracic echocardiography revealed an ostium secundum ASD.Twelve-lead electrocardiogram revealed atrial fibrillation with a prolonged relative risk interval,incomplete right bundle branch block,and crochetage sign.The patient was diagnosed with an ostium secundum ASD,atrial fibrillation with a second-degree atrioventricular block,and heart failure.The patient was treated with selective his bundle pacemaker implantation.After the procedure,crochetage sign disappeared during his bundle pacing on the electrocardiogram.CONCLUSION S-HBP eliminated crochetage sign on electrocardiogram.Crochetage sign may be a manifestation of a conduction system disorder.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金supported by NSFC(Grant Nos.92061101,22271104,21871141,22225109,and 21901123)the Excellent Youth Foundation of Jiangsu Scientific Committee(BK20211593)+2 种基金the project funded by the China Postdoctoral Science Foundation(2018M630572)the Priority Academic Program Development of Jiangsu Higher Education Institutions,and the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,the National Key Research and Development Project of China(Grant No.2021YFC2100100)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190694)。
文摘The semi-hydrogenation of alkyne to form Z-olefins with high conversion and high selectivity is still a huge challenge in the chemical industry.Moreover,flammable and explosive hydrogen as the common hydrogen source of this reaction increases the cost and danger of industrial production.Herein,we connect the photocatalytic hydrogen evolution reaction and the semihydrogenation reaction of alkynes in series and successfully realize the high selective production of Z-alkenes using low-cost,safe,and green water as the proton source.Before the cascade reaction,a series of isomorphic metal–organic cage catalysts(Co_(x)Zn_(8−x)L_(6),x=0,3,4,5,and 8)are designed and synthesized to improve the yield of the photocatalytic hydrogen production.Among them,Co_(5)Zn_(3)L_(6) shows the highest photocatalytic activity,with a H_(2) generation rate of 8.81 mmol g^(−1) h^(−1).Then,Co_(5)Zn_(3)L_(6) is further applied in the above tandem reaction to efficiently reduce alkynes to Z-alkenes under ambient conditions,which can reach high conversion of>98%and high selectivity of>99%,and maintain original catalytic activity after multiple cycles.This“one-pot”tandem reaction can achieve a highly selective and safe stepwise conversion from water into hydrogen into Z-olefins under mild reaction conditions.
基金the National Natural Science foundation of China(22379053 and 21878127)China Postdoctoral Science Foundation(2022M711358).We also thank Xu Fangping for assistance in HRTEM characterization from the Central Laboratory of School of Chemical and Material Engineering of Jiangnan University.
文摘The selective removal of trace acetylene in ethylene feed gas is of great significance in the petrochemicalindustry;however, there are still challenges in designing and developing high-performance catalysts. Here, a MOFassistedencapsulation strategy was adopted for the precise synthesis of diatomic Pd2 sites on a ZnO support. When usedfor the acetylene semi-hydrogenation reaction, the dual-atom Pd2-ZnO catalyst exhibited improved catalytic performance,achieving complete conversion of acetylene at 125 °C with an 89% selectivity to ethene, as compared to Pd single-atom andnanoparticles. This enhancement was mainly attributed to the catalyst’s ability to dissociate H2 and facilitate the desorptionof intermediate C2H4. Moreover, the strong interaction between the support and the diatomic Pd sites was responsible for thecatalyst’s excellent stability during the long-term reaction.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
基金Funded by the Natural Science Foundation of Shanxi Province of China(Nos.202303021221177 and 202103021224063)the National Natural Science Foundation of China(No.52002159)。
文摘A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.
基金supported by State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-18-73.17).
文摘Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.
基金funded by the National Eye Institute(NIH) EY029360the Whitehall Foundation+1 种基金the TIRR Foundationthe Levy-Longenbaugh Research Award to NMT National Institute on Aging (NIH) F31AG067676 to CAW。
文摘A common feature among neurodegenerative conditions is that ce rtain neuronal populations are selectively vulnerable to loss(Fu et al.,2018).By corollary,other neurons are selectively resilient,suggesting they may possess unique features that support their survival.U nderstanding the basis of neuronal resilience or vulnerability would provide a logical strategy to identify factors that could be targeted therapeutically.