Electrochemical CO_(2)reduction to C_(2)H_(4)can provide a sustainable route to reduce globally accelerating CO_(2)emissions and produce energy-rich chemical feedstocks.However,the poor selectivity in C_(2)H_(4)electr...Electrochemical CO_(2)reduction to C_(2)H_(4)can provide a sustainable route to reduce globally accelerating CO_(2)emissions and produce energy-rich chemical feedstocks.However,the poor selectivity in C_(2)H_(4)electrosynthesis limits its implementation in industrially interesting processes.Herein,we report a composite structured catalyst composed of Ag and Cu_(2)O with different crystal faces to achieve highly efficient reduction of CO_(2)to C_(2)H_(4).The catalyst composed of Ag and octahedral Cu_(2)O enclosed with(111)facet exhibits the best CO_(2)electroreduction performance,with the Faradaic efficiency(FE)and partial current density reaching 66.8%and 17.8 mA cm2 for C_(2)H_(4)product at-1.2 VRHE in 0.5 M KHCO_(3),respectively.Physical characterization and electrochemical test analysis indicate that the high selectivity for C_(2)H_(4)product stems from the synergistic effect of crystal faces control engineering and tandem catalysis.Specifically,Ag can provide optimal availability of CO intermediate by suppressing hydrogen evolution;subsequently,C-C coupling is promoted on the intimate surface of Cu_(2)O with facetdependent selectivity.The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for improving the selectivity of electrochemical CO_(2)reduction reaction to generate C2þproducts.展开更多
Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important r...Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important role than the surface roughness,local pH,and facet in governing the selectivity toward C_(1)or C_(2)hydrocarbons.The selectivity toward C_(2)H_(4) progressively increases,while CH_(4) decreases steadily upon lowering the Cu oxidation species fraction.At a relatively low electrodeposition voltage of 1.5 V,the Cu gas-diffusion electrode with the highest Cu^(δ+)/Cu^(0)ratio favors the pathways of∗CO hydrogenation to form CH_(4) with maximum Faradaic efficiency of 65.4%and partial current density of 228 mA cm^(−2)at−0.83 V vs RHE.At 2.0 V,the Cu gas-diffusion electrode with the lowest Cu^(δ+)/Cu^(0)ratio prefers C-C coupling to form C_(2)+products with Faradaic efficiency topping 80.1%at−0.75 V vs RHE,where the Faradaic efficiency of C_(2)H_(4) accounts for 46.4%and the partial current density of C_(2)H_(4) achieves 279 mA cm^(−2).This work demonstrates that the selectivity from CH_(4) to C_(2)H_(4) is switchable by tuning surface Cu species composition of Cu gas-diffusion electrodes.展开更多
The conversion of CO_(2)into value-added chemicals coupled with the storage of intermittent renewable electricity is attractive.CuO nanosheets with an average size and thickness of~30 and~20 nm have been developed,whi...The conversion of CO_(2)into value-added chemicals coupled with the storage of intermittent renewable electricity is attractive.CuO nanosheets with an average size and thickness of~30 and~20 nm have been developed,which are in situ reduced into Cu nanosheets during electrochemical CO_(2)reduction reaction(ECO_(2)RR).The derived Cu nanosheets demonstrate much higher selectivity for C2H4production than commercial CuO derived Cu powder,with an optimum Faradaic efficiency of 56.2%and a partial current density of C_(2)H_(4)as large as 171.0 mA cm^(-2)in a gas diffusion flow cell.The operando attenuated total reflectance-Fourier transform infrared spectra measurements and density functional theory simulations illustrate that the high activity and selectivity of Cu nanosheets originate from the edge sites on Cu nanosheets with a coordinate number around 5(4–6),which facilitates the formation of^(*)CHO rather than^(*)COH intermediate,meanwhile boosting the C-C coupling reaction of^(*)CO and^(*)CHO intermediates,which are the critical steps for C_(2)H_(4)formation.展开更多
基金This work was supported by the University of Science and Technology Beijing.DG acknowledges the financial support from 111 Project(no.B170003)Foshan Science and Technology Innovation Project(no.2018IT100363).
文摘Electrochemical CO_(2)reduction to C_(2)H_(4)can provide a sustainable route to reduce globally accelerating CO_(2)emissions and produce energy-rich chemical feedstocks.However,the poor selectivity in C_(2)H_(4)electrosynthesis limits its implementation in industrially interesting processes.Herein,we report a composite structured catalyst composed of Ag and Cu_(2)O with different crystal faces to achieve highly efficient reduction of CO_(2)to C_(2)H_(4).The catalyst composed of Ag and octahedral Cu_(2)O enclosed with(111)facet exhibits the best CO_(2)electroreduction performance,with the Faradaic efficiency(FE)and partial current density reaching 66.8%and 17.8 mA cm2 for C_(2)H_(4)product at-1.2 VRHE in 0.5 M KHCO_(3),respectively.Physical characterization and electrochemical test analysis indicate that the high selectivity for C_(2)H_(4)product stems from the synergistic effect of crystal faces control engineering and tandem catalysis.Specifically,Ag can provide optimal availability of CO intermediate by suppressing hydrogen evolution;subsequently,C-C coupling is promoted on the intimate surface of Cu_(2)O with facetdependent selectivity.The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for improving the selectivity of electrochemical CO_(2)reduction reaction to generate C2þproducts.
基金partially financially supported by NSF CBET-2033343.J.Z.thanks the support from National Natural Science Foundation of China(52172293,51772072,and 51672065)the Fundamental Research Funds for the Central Universities(JZ2021HGQB0282 and PA2021GDSK0088)+3 种基金financial support from the Key R&D Projects of Anhui Province(202104b11020016)the 111 Project(B18018)the National Synchrotron Light Source II,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No.DE-SC0012704the use of facilities within the Eyring Materials Center at Arizona State University supported in part by NNCI-ECCS-1542160.
文摘Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important role than the surface roughness,local pH,and facet in governing the selectivity toward C_(1)or C_(2)hydrocarbons.The selectivity toward C_(2)H_(4) progressively increases,while CH_(4) decreases steadily upon lowering the Cu oxidation species fraction.At a relatively low electrodeposition voltage of 1.5 V,the Cu gas-diffusion electrode with the highest Cu^(δ+)/Cu^(0)ratio favors the pathways of∗CO hydrogenation to form CH_(4) with maximum Faradaic efficiency of 65.4%and partial current density of 228 mA cm^(−2)at−0.83 V vs RHE.At 2.0 V,the Cu gas-diffusion electrode with the lowest Cu^(δ+)/Cu^(0)ratio prefers C-C coupling to form C_(2)+products with Faradaic efficiency topping 80.1%at−0.75 V vs RHE,where the Faradaic efficiency of C_(2)H_(4) accounts for 46.4%and the partial current density of C_(2)H_(4) achieves 279 mA cm^(−2).This work demonstrates that the selectivity from CH_(4) to C_(2)H_(4) is switchable by tuning surface Cu species composition of Cu gas-diffusion electrodes.
基金funded by the National Key Research and Development Program of China(2017YFA0700103,2018YFA0704502)the National Natural Science Foundation of China(21703248)staffs in BL11B beamline in Shanghai Synchrotron Radiation Facility(SSRF)for their technical assistance(2020-SSRF-PT-012223 and 2021-SSRF-PT-015319)。
文摘The conversion of CO_(2)into value-added chemicals coupled with the storage of intermittent renewable electricity is attractive.CuO nanosheets with an average size and thickness of~30 and~20 nm have been developed,which are in situ reduced into Cu nanosheets during electrochemical CO_(2)reduction reaction(ECO_(2)RR).The derived Cu nanosheets demonstrate much higher selectivity for C2H4production than commercial CuO derived Cu powder,with an optimum Faradaic efficiency of 56.2%and a partial current density of C_(2)H_(4)as large as 171.0 mA cm^(-2)in a gas diffusion flow cell.The operando attenuated total reflectance-Fourier transform infrared spectra measurements and density functional theory simulations illustrate that the high activity and selectivity of Cu nanosheets originate from the edge sites on Cu nanosheets with a coordinate number around 5(4–6),which facilitates the formation of^(*)CHO rather than^(*)COH intermediate,meanwhile boosting the C-C coupling reaction of^(*)CO and^(*)CHO intermediates,which are the critical steps for C_(2)H_(4)formation.