Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibit...Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure pres...In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure presents attractive properties as cathode of Li-Se batteries, with a high specific capacity of 588.7 mAh·g^-1 at a 0.2C (1C = 675 mA·g^-1) rate after 200 cycles. Even at a high rate of 2C, a high capacity of 528.6 mAh·g^-1 is obtained after 500 cycles. The excellent cycle stability and rate performance of the PANI@Se/C-G composite can be attributed to the synergistic combination of carbon black (as the conductive matrix for Se) and the double conductive layer comprising the uniform PANI shell and the graphene sheets, which effectively improves the utilization of selenium and significantly enhances the electronic conductivity of the whole electrode.展开更多
An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recy...An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recyclable non-metal selenium as a catalyst instead of the noble metal palladium;carbon monoxide as a carbonylation agent instead of virulent phosgene or one of its derivatives;and oxygen as an oxidant.The selenium-catalyzed oxidative carbonylation reaction of2-aminobenzyl alcohol proceeded efficiently in a single pot in the presence of triethylamine to afford l,4-dihydro-2H-3,l-benzoxazin-2-one in 87%yield.Furthermore,the selenium catalyst was readily recovered and recycled,affording a product yield of 80%after five cycles.展开更多
Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S...Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.展开更多
Selenium was inserted into the zinc carbon bond of aryl zinc halides to form corresponding zinc selenoates. They reacted in THF-HMPA with acylhalides to afford the selenoesters in high yields.
Potassium-selenium(K-Se)batteries have attracted more and more attention because of their high theoretical specific capacity and natural abundance of K resources.However,dissolution of polyselenides,large volume expan...Potassium-selenium(K-Se)batteries have attracted more and more attention because of their high theoretical specific capacity and natural abundance of K resources.However,dissolution of polyselenides,large volume expansion during cycling and low utilization of Se remain great challenges,leading to poor rate capability and cycle life.Herein,N/O dual-doped carbon nanofibers with interconnected micro/mesopores(MMCFs)are designed as hosts to manipulate Se molecular configuration for advanced flexible K-Se batteries.The micropores play a role in confining small Se molecule(Se_(2–3)),which could inhibit the formation of polyselenides and work as physical barrier to stabilize the cycle performance.While the mesopores can confine long-chain Se(Se_(4–7)),promising sufficient Se loading and contributing to higher discharge voltage of the whole Se@MMCFs composite.The N/O co-doping and the 3D interpenetrating nanostructure improve electrical conductivity and keep the structure integrity after cycling.The obtained Se_(2–3)/Se_(4–7)@MMCFs electrode exhibits an unprecedented cycle life(395 mA h g^(−1) at 1 A g^(−1) after 2000 cycles)and high specific energy density(400 Wh kg^(−1),nearly twice the specific energy density of the Se_(2–3)@MMCFs).This study offers a rational design for the realization of a high energy density and long cycle life chalcogen cathode for energy storage.展开更多
In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabrica...In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.展开更多
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ...Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.展开更多
The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high ...The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.展开更多
NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the ...NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite,and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.Ni_(3)ZnC_(0.7),Ni_(3)Fe,and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity.Thus,the composite exhibited the best performance among the composites,with the minimum reflection loss(RL_(min))of-33.1 dB at 18 GHz and thickness of 1.4 mm.The bandwidth for RL of≤-10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%.The op-timized impedance matching,enhanced interfacial and dipole polarization,remarkable conduction loss,and multiple reflections and scat-tering of the incident microwaves improved the microwave absorption performance.The effects of Co,Ni,and Fe on the phase and mor-phology provided an alternative way for developing highly efficient and broadband microwave absorbers.展开更多
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob...Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.展开更多
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt...Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.展开更多
Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management optio...Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.展开更多
Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since...Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since the Se safety range for the human body is extremely narrow,it is imperative to evaluate the genotypic responses of mungbean sprouts to Se.This study evaluated the Se enrichment capacity and interaction withflavonoids and antioxidant systems in sprouts of 20 mungbean germplasms.Selenium treatment was done by immersing mung-bean seeds in 20μM sodium selenite solution for 8 h.Afterward,the biomass,Se amounts,flavonoid(particularly vitexin and isovitexin)contents,antioxidant capacity,and key biosynthetic gene expressions were measured.Sprout Se content was 2.0-7.0μg g^(-1) DW among the 20 mungbean germplasms.Selenium treatment differentially affected the biomass,totalflavonoid,vitexin,isovitexin,antioxidant enzyme activities,and antioxidant capacities of the mungbean germplasms.Eight germplasms showed increased biomass(p<0.05),the highest increasing by 127%,but 13 did not phenotypically respond to Se treatment.Seven and six germplasms showed varied levels of vitexin and isovitexin increment after Se treatment,the highest measuring 2.67-and 2.87-folds for vitexin and isovitexin,respectively.Two mungbeanflavonoid biosynthesis genes,chalcone synthase(VrCHS)and chalcone isomerase(VrCHI)were significantly up-regulated in the germplasms with increased vitexin and isovitexin levels(p<0.05).Moreover,Se enrichment capacity was significantly correlated with the vitexin,isovitexin,and antiox-idant capacities.In conclusion,mungbean sprouts could be a useful Se-biofortified food,but the Se enrichment capacity and nutritional response must be determined for each germplasm before commercialization.展开更多
Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode ...Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance.展开更多
基金financially supported by the National Natural Science Foundation of China (42207032,52070064)the Key Project of National Natural Science Foundation of China (42330705)+2 种基金Key R&D Project of Hebei Province (21373601D)Advanced Talents Incubation Program of the Hebei University (521100222012)economic support from Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development and Institute of Life Sciences and Green Development of Hebei University。
文摘Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金The authors would like to appreciate the financial support from the Natural Sciences Fund of Zhejiang Province (No. LQ17B010003) and the National Natural Science Foundation of China (NSFC) (No. 11604319).
文摘In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure presents attractive properties as cathode of Li-Se batteries, with a high specific capacity of 588.7 mAh·g^-1 at a 0.2C (1C = 675 mA·g^-1) rate after 200 cycles. Even at a high rate of 2C, a high capacity of 528.6 mAh·g^-1 is obtained after 500 cycles. The excellent cycle stability and rate performance of the PANI@Se/C-G composite can be attributed to the synergistic combination of carbon black (as the conductive matrix for Se) and the double conductive layer comprising the uniform PANI shell and the graphene sheets, which effectively improves the utilization of selenium and significantly enhances the electronic conductivity of the whole electrode.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT1061)the Program for Innovative Research Team in Science and Technology in University of Henan Province(15IRTSTHN003)+1 种基金the Young Backbone Teachers Training Fund of the Education Department of Henan Province(2013GGJS-059)Henan Normal University(2011-8)
文摘An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recyclable non-metal selenium as a catalyst instead of the noble metal palladium;carbon monoxide as a carbonylation agent instead of virulent phosgene or one of its derivatives;and oxygen as an oxidant.The selenium-catalyzed oxidative carbonylation reaction of2-aminobenzyl alcohol proceeded efficiently in a single pot in the presence of triethylamine to afford l,4-dihydro-2H-3,l-benzoxazin-2-one in 87%yield.Furthermore,the selenium catalyst was readily recovered and recycled,affording a product yield of 80%after five cycles.
基金financially supported by the National Key R&D Program of China(Grants 2016YBF0100100,2016YFA0200200)the National Natural Science Foundation of China(Grants 51872283,21805273)+1 种基金the Liaoning Bai Qian Wan Talents Program,Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Liao Ning Revitalization Talents Program(Grant XLYC1807153),DICP(DICP ZZBS201708,DICP ZZBS201802,DICP I202032),DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915),DICP&QIBEBT(Grant DICP&QIBEBT UN201702)。
文摘Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.
文摘Selenium was inserted into the zinc carbon bond of aryl zinc halides to form corresponding zinc selenoates. They reacted in THF-HMPA with acylhalides to afford the selenoesters in high yields.
基金This work was supported by the National Key R&D Research Program of China(Nos.2018YFA0209600,2017YFA0208300)the National Natural Science Foundation of China(Nos.51925207,U1910210,51872277,52002083,22005292,51802302)+4 种基金the DNL cooperation Fund,CAS(DNL180310)the Fundamental Research Funds for the Central Universities(WK2060140026,WK3430000006,WK2060000009)the National Synchrotron Radiation Laboratoi-y(KY2060000173)the National Postdoctoral Program for Innovative Talents(BX20200318)the China Postdoctoral Science Foundation(Nos.2020M672533,2019TQ0296,2020M682012).
文摘Potassium-selenium(K-Se)batteries have attracted more and more attention because of their high theoretical specific capacity and natural abundance of K resources.However,dissolution of polyselenides,large volume expansion during cycling and low utilization of Se remain great challenges,leading to poor rate capability and cycle life.Herein,N/O dual-doped carbon nanofibers with interconnected micro/mesopores(MMCFs)are designed as hosts to manipulate Se molecular configuration for advanced flexible K-Se batteries.The micropores play a role in confining small Se molecule(Se_(2–3)),which could inhibit the formation of polyselenides and work as physical barrier to stabilize the cycle performance.While the mesopores can confine long-chain Se(Se_(4–7)),promising sufficient Se loading and contributing to higher discharge voltage of the whole Se@MMCFs composite.The N/O co-doping and the 3D interpenetrating nanostructure improve electrical conductivity and keep the structure integrity after cycling.The obtained Se_(2–3)/Se_(4–7)@MMCFs electrode exhibits an unprecedented cycle life(395 mA h g^(−1) at 1 A g^(−1) after 2000 cycles)and high specific energy density(400 Wh kg^(−1),nearly twice the specific energy density of the Se_(2–3)@MMCFs).This study offers a rational design for the realization of a high energy density and long cycle life chalcogen cathode for energy storage.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject supported by the Recruitment Program of Global Youth Experts,ChinaProject(20130162120031)supported by Research Fund for the Doctoral Program of Higher Education of China
文摘In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.
基金the National Natural Science Foundation of China(Nos.52102036 and52301192)the Sichuan Science and Technology Program,China(No.2021JDRC0099)+3 种基金Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province,China(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams)“Sanqin Scholars”Innovation Teams Project of Shaanxi Province,China(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.)。
文摘Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(52103090)the Natural Science Foundation of Guangdong Province(2022A1515011780)Autonomous deployment project of China National Key Laboratory of Materials for Integrated Circuits(NKLJC-Z2023-B03).
文摘The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.
基金supported by research pro-grams of National Natural Science Foundation of China(Nos.52101274 and 52377026)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011 and ZR2022ME089)+4 种基金Taishan Scholars and Young Experts Pro-gram of Shandong Province,China(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Special Fin-ancial of Shandong Province,China(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams),Youth Top Talent Foundation of Yantai University(No.2219008)Graduate Innovation Foundation of Yantai University(No.GIFYTU2240)College Student Innovation and Entrepreneurship Training Program Project(No.202311066088).
文摘NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite,and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.Ni_(3)ZnC_(0.7),Ni_(3)Fe,and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity.Thus,the composite exhibited the best performance among the composites,with the minimum reflection loss(RL_(min))of-33.1 dB at 18 GHz and thickness of 1.4 mm.The bandwidth for RL of≤-10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%.The op-timized impedance matching,enhanced interfacial and dipole polarization,remarkable conduction loss,and multiple reflections and scat-tering of the incident microwaves improved the microwave absorption performance.The effects of Co,Ni,and Fe on the phase and mor-phology provided an alternative way for developing highly efficient and broadband microwave absorbers.
基金Under the auspices of National Natural Science Foundation of China(No.42171230)。
文摘Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.
基金funding support from the National Key R&D Program of China(Grant No.2022YFE0115800)the Creative Groups of Natural Science Foundation of Hubei Province(Grant No.2021CFA030)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.
基金the National Natural Science Foundation of China(Nos.U20A2089 and 41971152)the Research Foundation of the Department of Natural Resources of Hunan Province(No.20230138ST)to SLthe open research fund of Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin,Ministry of Natural Resources(No.2023005)to YZ。
文摘Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.
基金This study was supported by the Key Project of Natural Science Research for Colleges and Universities in Anhui Province(KJ2021A0533,2023AH050345)the Excellent Scientific Research and Innovation Team of Universities in Anhui Province(2022AH010029).
文摘Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since the Se safety range for the human body is extremely narrow,it is imperative to evaluate the genotypic responses of mungbean sprouts to Se.This study evaluated the Se enrichment capacity and interaction withflavonoids and antioxidant systems in sprouts of 20 mungbean germplasms.Selenium treatment was done by immersing mung-bean seeds in 20μM sodium selenite solution for 8 h.Afterward,the biomass,Se amounts,flavonoid(particularly vitexin and isovitexin)contents,antioxidant capacity,and key biosynthetic gene expressions were measured.Sprout Se content was 2.0-7.0μg g^(-1) DW among the 20 mungbean germplasms.Selenium treatment differentially affected the biomass,totalflavonoid,vitexin,isovitexin,antioxidant enzyme activities,and antioxidant capacities of the mungbean germplasms.Eight germplasms showed increased biomass(p<0.05),the highest increasing by 127%,but 13 did not phenotypically respond to Se treatment.Seven and six germplasms showed varied levels of vitexin and isovitexin increment after Se treatment,the highest measuring 2.67-and 2.87-folds for vitexin and isovitexin,respectively.Two mungbeanflavonoid biosynthesis genes,chalcone synthase(VrCHS)and chalcone isomerase(VrCHI)were significantly up-regulated in the germplasms with increased vitexin and isovitexin levels(p<0.05).Moreover,Se enrichment capacity was significantly correlated with the vitexin,isovitexin,and antiox-idant capacities.In conclusion,mungbean sprouts could be a useful Se-biofortified food,but the Se enrichment capacity and nutritional response must be determined for each germplasm before commercialization.
基金the financial support by the National Science Foundation of China(51822706 and 52107234)Beijing Natural Science Foundation(JQ19012)+2 种基金the DNL Cooperation Fund,CAS(DNL201912 and DNL201915)Innovation Academy for Green Manufacture Fund(IAGM2020C02)Youth Innovation Promotion Association,CAS(Y2021052).
文摘Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance.