期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Low-temperature and Herbicide on Membrane Stability, Antioxidant Capacity, and Product of Metabolism in Barley Seedlings
1
作者 Kong Zhi-you Qin Peng +2 位作者 Liu Ye-ju Chen Jia Wang Shuo 《Journal of Northeast Agricultural University(English Edition)》 CAS 2013年第1期14-20,共7页
In order to investigate the physiological injury of barley caused by the low temperature after herbicides, tillering barley seedlings planted in plastic cups were pretreated in illumination incubator at 15℃ and 12 h-... In order to investigate the physiological injury of barley caused by the low temperature after herbicides, tillering barley seedlings planted in plastic cups were pretreated in illumination incubator at 15℃ and 12 h-light per day for 7 days, and then subjected to herbicide treatment, prometryn (with the concentrations of 0, 0.15%, 0.30%, and 0.45%) or isoproturon (with the concentrations of 0, 0.30%, 0.60%, and 0.90%), and the SOD activity, the CAT activity, the POD activity, the MDA content, proline content, soluble protein content, electrical conductivity, and the rate of O2 were determined and analyzed. The results showed that the low-temperature was the most important, and the treatment-time of low-temperature was another significant influencing factor on the physiological and biochemical indices of barley seedlings. However, all of the physiological and biochemical indices determined were not affected by the kinds of herbicides and herbicide concentrations, and the SOD was stable and should play the more prominent role on extracting of free radicals according to the stepwise regression and correlation. The herbicide concentrations should be increased in the future research for truly reflecting the effects of the herbicide concentration on the physiological and biochemical indices of barley seedlings. 展开更多
关键词 barley seedling low temperature HERBICIDE physiological and biochemical indices
下载PDF
Phenotype,Physiology,and Gene Expression of Barley Seedlings in Response to Nano Zinc Oxide Stress
2
作者 Mengyuan Dong Rong Sun +6 位作者 Qianhui Yang Lantian Zhang Yangying Yong Yunxia Fang Xian Zhang Xiaoqin Zhang Dawei Xue 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第6期1589-1598,共10页
In recent years,zinc oxide nanoparticles(ZnO NPs)have been widely used as zinc fertilizers and pesticides.The use of ZnO NPs in this way can provide benefits to humans,but also has potential risks.ZnO NPs inevitably e... In recent years,zinc oxide nanoparticles(ZnO NPs)have been widely used as zinc fertilizers and pesticides.The use of ZnO NPs in this way can provide benefits to humans,but also has potential risks.ZnO NPs inevitably enter the environment during their production and use,which affects the ecological environment and crop growth.In order to investigate the phenotype,physiology,and gene expression of barley(Hordeum vulgare L.)seedlings under ZnO NPs stress,the barely cultivars ZJU3(P21),Golden Promise(GP)and L23 were chosen for study.Different ZnO NPs concentrations were applied to compare the physiological and biochemical indexes of the barley seedlings and the responses of six stress-related genes,when seedlings were cultured to the two-leaf stage through hydroponics.The results showed that the density of brown spots on the leaf surface increased with increasing ZnO NPs concentration.ZnO NPs stress inhibited the root growth of barley seedlings,and P21 was the most sensitive.Furthermore,ZnO NPs stress could stimulate plants to produce a large number of reactive oxygen species(ROS),resulting in an imbalance between the production and removal of ROS and membrane lipid peroxidation in plants.This imbalance inhibited the growth and development of the barley seedlings.With increasing ZnO NPs concentration,the activity of superoxide dismutase was gradually increased,the activity of catalase was progressively decreased,and the contents of malondialdehyde and proline were increased.Compared with the control,among six stress-related genes,the expression levels of five genes were downregulated and one gene was upregulated in the experimental group.This study preliminarily revealed the toxic effect of ZnO NPs on seedlings and the effect on the expression of stress-related resistance genes in different barley varieties. 展开更多
关键词 Antioxidant enzymes barley seedlings reactive oxygen species gene expression zinc oxide nanoparticles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部