Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces...Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.展开更多
Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alc...Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules...HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules,characterized by their hollow structures,demonstrated potential as carriers for targeted drug delivery.1 Introduction Peptide nanocapsules are a type of nanoscale delivery system that encapsulates active substances within a shell composed of peptides,leveraging the unique properties of peptides such as biocompatibility and biodegradability[1].Historically,the development of peptide nanocapsules was inspired primordially by the natural biological processes.展开更多
Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in...Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in the neuroprotection mechanism remains to be elucidated.In this study,RNA-sequencing and miRNA-sequencing were used to independently identify differentially expressed mRNAs and small RNAs profiles in Pb^(2+)-treated primary fetal rat cortical neurons and then the correlated miRNA-mRNA target pairs were obtained.It was found that 34 mRNAs related to oxidative phosphorylation could be reversed by pretreatment of TSeMMM and SeMDPGQQ.The protective effect of TSeMMM and SeMDPGQQ was mediated by upregulation of miR-107-3p,which downregulates the ATPase H+transporting V0 subunit e1(Atp6v0e1)mRNA level.A zebrafish model was applied to verify the relevance between the targeted mRNA and miRNA by real-time quantitative PCR.The results indicated that miR-107-3p was a potential therapeutic target to achieve neuroprotection of Se-containing peptides via stimulation of Atp6v0e1.展开更多
Globally,the prevalence of anxiety and depression has reached epidemic proportions.Food-derived protein hydrolysates and peptides delivered through dietary supplementation can avoid the negative risks associated with ...Globally,the prevalence of anxiety and depression has reached epidemic proportions.Food-derived protein hydrolysates and peptides delivered through dietary supplementation can avoid the negative risks associated with traditional pharmaceuticals while delivering superior anxiolytic and antidepressant effects.This review summarizes current research on food-derived anxiolytic and antidepressant protein hydrolysates and peptides,and subsequently analyses their physicochemical characteristics and elaborates on their mechanisms.The aim of this work is to contribute to the in-depth study and provide a theoretical foundation for the development of related products to better serve patients with anxiety and depression.展开更多
Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high ac...Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.展开更多
The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activati...The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues,including diffe rent brain regions.Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection,like the support of cell growth/survival,enhancement promotion of synapse formation,autophagy,and inhibition of the secretion of proinflammatory cytokines,microglial activation,and apoptosis during neural morphogenesis.The glial cells,including astrocytes and microglia,maintain metabolic homeostasis and defe nse against pathogens in the central nervous system.After brain insult,microglia are the first cells to respond,followed by reactive astrocytosis.These activated cells produce proinflammato ry mediators like cytokines or chemokines to react to the insult.Furthermore,under these circumstances,mic roglia can become chro nically inflammatory by losing their homeostatic molecular signature and,consequently,their functions during many diseases.Several processes promote the development of neurological disorders and influence their pathological evolution:like the formation of protein aggregates,the accumulation of abnormally modified cellular constituents,the formation and release by injured neurons or synapses of molecules that can dampen neural function,and,of critical impo rtance,the dysregulation of inflammato ry control mechanisms.The glucagonlike peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies,restoring brain cell homeostasis under inflammatory conditions,modulating mic roglia activity,and decreasing the inflammato ry response.This review summarizes recent advances linked to the anti-inflammato ry prope rties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis,Alzheimer’s disease,Parkinson’s disease,vascular dementia,or chronic migraine.展开更多
Alpha-lactalbumin(α-LA)is a major whey protein found in breast milk and plays a crucial role in the growth and development of infants.In this study,Bacillus subtilis RIK1285 harboring AprE signal peptide(SP)was selec...Alpha-lactalbumin(α-LA)is a major whey protein found in breast milk and plays a crucial role in the growth and development of infants.In this study,Bacillus subtilis RIK1285 harboring AprE signal peptide(SP)was selected as the original strain for the production ofα-LA.It was found thatα-LA was identified in the pellet after ultrasonic disruption and centrifugation instead of in the fermentation supernatant.The original strain most likely only producedα-LA intracellular,but not extracellular.To improve the expression and secretion ofα-LA in RIK1285,a library of 173 homologous SPs from the B.subtilis 168 genome was fused with target LALBA gene in the pBE-S vector and expressed extracellularly in RIK1285.SP YjcN was determined to be the best signal peptide.Bands in supernatant were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and purified by nickel column to calculate the highest yield signal peptide.In addition,different promoters(P_(aprE),P_(43),and P_(glv))were compared and applied.The results indicated that the strain RIK1285-pBE-P_(glv)-YjcN-LALBA had the highestα-LA yield,reaching 122.04μg/mL.This study demonstrates successful expression and secretion of humanα-LA in B.subtilis and establishes a foundation for simulating breast milk for infant formulas and developing bioengineered milk.展开更多
Rhizobia induces nitrogen-fixing nodules in legumes used in agricultural production,providing a direct source of combined nitrogen to leguminous crops.Small peptides,such as CLAVATA3/EMBRYO SURROUNDING REGION peptides(...Rhizobia induces nitrogen-fixing nodules in legumes used in agricultural production,providing a direct source of combined nitrogen to leguminous crops.Small peptides,such as CLAVATA3/EMBRYO SURROUNDING REGION peptides(CLE),are known to regulate the formation and development of nitrogen-fixing nodules in legumes.Root meristem growth factor(RGF)peptides from Medicago truncatula not only regulate root develop-ment but also modulate nodulation symbiosis with Sinorhizobium meliloti.However,the impact of RGF peptides from one leguminous species on the others remains unclear.In this study,we investigate the effects of the RGF family peptide MtRGF6p from M.truncatula on nodulation symbiosis and root development in Lotus japonicus.The MtRGF6 gene is predominantly expressed in the root nodules of M.truncatula and shows low identity with RGF homologous genes from L.japonicus.The gene promoter is active in the primordia of root nodules and lat-eral roots,as well as in young nodules and roots,and the meristem,infection,and nitrogen-fixing regions of the mature nodule.Chemically synthesized MtRGF6p promoted primary root growth in M.truncatula but sup-pressed the growth of L.japonicus primary roots.The peptide negatively affected the initiation of nodule primor-dia,the formation of infection threads,and nodulation in both legumes,with a low dosage showing effects on L.japonicus compared to M.truncatula.These results suggest that the MtRGF6 peptide from M.truncatula may serve as an inter-species signal affecting the root organ development of L.japonicus.展开更多
Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In...Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.展开更多
BACKGROUND:Streptococcus pneumoniae(S.pneumoniae)is a common pathogen that causes bacterial pneumonia.However,with increasing bacterial resistance,there is an urgent need to develop new drugs to treat S.pneumoniae inf...BACKGROUND:Streptococcus pneumoniae(S.pneumoniae)is a common pathogen that causes bacterial pneumonia.However,with increasing bacterial resistance,there is an urgent need to develop new drugs to treat S.pneumoniae infections.Nanodefensin with a 14-carbon saturated fatty acid(ND-C14)is a novel nanoantimicrobial peptide designed by modifying myristic acid at the C-terminus of humanα-defensin 5(HD5)via an amide bond.However,it is unclear whether ND-C14 is effective against lung infections caused by S.pneumoniae.METHODS:In vitro,three groups were established,including the control group,and the HD5 and ND-C14 treatment groups.A virtual colony-count assay was used to evaluate the antibacterial activity of HD5 and ND-C14 against S.pneumoniae.The morphological changes of S.pneumoniae treated with HD5 or ND-C14 were observed by scanning electron microscopy.In vivo,mice were divided into sham,vehicle,and ND-C14 treatment groups.Mice in the sham group were treated with 25μL of phosphate-buffered saline(PBS).Mice in the vehicle and ND-C14 treatment groups were treated with intratracheal instillation of 25μL of bacterial suspension with 2×108 CFU/mL(total bacterial count:5×10^(6) CFU),and then the mice were given 25μL PBS or intratracheally injected with 25μL of ND-C14(including 20μg or 50μg),respectively.Survival rates were evaluated in the vehicle and ND-C14 treatment groups.Bacterial burden in the blood and bronchoalveolar lavage fluid were counted.The lung histology of the mice was assessed.A propidium iodide uptake assay was used to clarify the destructive eff ect of ND-C14 against S.pneumoniae.RESULTS:Compared with HD5,ND-C14 had a better bactericidal eff ect against S.pneumoniae because of its stronger ability to destroy the membrane structure of S.pneumoniae in vitro.In vivo,ND-C14 significantly delayed the death time and improved the survival rate of mice infected with S.pneumoniae.ND-C14 reduced bacterial burden and lung tissue injury.Moreover,ND-C14 had a membrane permeation eff ect on S.pneumoniae,and its destructive ability increased with increasing ND-C14 concentration.CONCLUSION:The ND-C14 may improve bactericidal eff ects on S.pneumoniae both in vitro and in vivo.展开更多
The angiotensin-converting enzyme(ACE)inhibitory peptide NCW derived from Mizuhopecten yessoensis has been demonstrated to have significant in vivo anti-hypertensive effects,however,its anti-hypertensive mechanism is ...The angiotensin-converting enzyme(ACE)inhibitory peptide NCW derived from Mizuhopecten yessoensis has been demonstrated to have significant in vivo anti-hypertensive effects,however,its anti-hypertensive mechanism is still not fully clarified.This study established a UPLC-Q-TRAP-MS/MS-based widely targeted kidney metabolomics approach to explore the changes of kidney metabolic profiles and to clarify the antihypertensive mechanism of peptide NCW in spontaneously hypertensive rats(SHRs).Multivariate statistical analysis indicated that the kidney metabolic profiles were clearly separated between the SHR-NCW and SHRUntreated groups.A total of 85 metabolites were differentially regulated,and 16 metabolites were identified as potential kidney biomarkers,e.g.,3-hydroxybutyrate,malonic acid,deoxycytidine,and L-aspartic acid.The peptide NCW might regulate kidney metabolic disorder of SHRs to alleviate hypertension by suppressing inflammation and improving nitric oxide production under the regulation of linoleic acid metabolism,folate related pathways,synthesis and degradation of ketone bodies,pyrimidine metabolism,β-alanine metabolism,and retinal metabolism.展开更多
The taste presentation and receptor perception mechanism of the salty peptide of Stropharia rugosoannulata were predicted and verified using peptide omics and molecular interaction techniques.The combination of aspart...The taste presentation and receptor perception mechanism of the salty peptide of Stropharia rugosoannulata were predicted and verified using peptide omics and molecular interaction techniques.The combination of aspartic acid(D)and glutamic acid(E),or peptide fragments composed of arginine(R),constitute the characteristic taste structural basis of salty peptides of S.rugosoannulata.The taste intensity of the salty peptide positively correlates with its concentration within a specific concentration range(0.25–1.0 mg/mL).The receptor more easily recognizes the first amino acid residue at the N-terminal of salty peptides and the aspartic acid residue in the peptides.GLU513,ASP707,and VAL508 are the critical amino acid residues for the receptor to recognize salty peptides.TRPV1 is specifically the receptor for recognizing salty peptides.Hydrogen bonds and electrostatic interactions are the main driving forces for the interactions between salty peptides and TRPV1 receptors.KSWDDFFTR has the most potent binding capacity with the receptor and has tremendous potential for application in sodium salt substitution.This study confirmed the taste receptor that specifically recognizes salty peptides,analyzed the receptor-peptide binding interaction,and provided a new idea for understanding the taste receptor perception of salty peptides.展开更多
Melittin,a classical antimicrobial peptide,is a highly potent antitumor agent.However,its significant toxicity seriously hampers its application in tumor therapy.In this study,we developed novel melittin analogs with ...Melittin,a classical antimicrobial peptide,is a highly potent antitumor agent.However,its significant toxicity seriously hampers its application in tumor therapy.In this study,we developed novel melittin analogs with pH-responsive,cell-penetrating and membranelytic activities by replacing arginine and lysine with histidine.After conjugation with camptothecin(CPT),CPT-AAM-1 and CPT-AAM-2 were capable of killing tumor cells by releasing CPT at low concentrations and disrupting cell membranes at high concentrations under acidic conditions.Notably,we found that the C-terminus of the melittin analogs was more suitable for drug conjugation than the N-terminus.CPT-AAM-1 significantly suppressed melanoma growth in vivo with relatively low toxicity.Collectively,the present study demonstrates that the development of antitumor drugs based on pH-responsive antimicrobial peptide-drug conjugates is a promising strategy.展开更多
Venom snake-derived peptides have multiple biochemical,pharmacological,and toxicological profiles,allowing for the discovery of new medicinal products and therapeutic applications.This review specifically examines the f...Venom snake-derived peptides have multiple biochemical,pharmacological,and toxicological profiles,allowing for the discovery of new medicinal products and therapeutic applications.This review specifically examines the fundamental elements of neuroprotection offered by different oligopeptides derived from snake venom.It also includes a brief evaluation of short peptides that are being considered as potential therapeutic agents.Proline-rich peptides and tryptophyllin family peptides isolated from the crude venom of Viperidae family snakes,specifically Bothrops atrox,Bothrops jararaca,and Bothrops moojeni,have been shown to have pro-survival properties,the ability to reduce oxidative stress,and the ability to promote cell viability and mitochondrial functions.Three significant mechanisms are related to the neuroprotection mediated by snake venom oligopeptides:(1)Activation of the L-arginine metabolite pathway,such as polyamines from ornithine metabolism,which reduces N-methyl-D-aspartate(NMDA)-type glutamate receptor activity;(2)Enhancement of cell viability by activating the nerve growth factor-signaling pathway;and(3)Activation of the Muscarinic acetylcholine receptor subtype M1(mAChR-M1).These small peptides show promise as neuroprotective agents against a variety of neurodegenerative disorders.展开更多
Background Necrotic enteritis(NE)is a major enteric disease in poultry,yet effective mitigation strategies remain elusive.Deoxycholic acid(DCA)and butyrate,two major metabolites derived from the intestinal microbiota,...Background Necrotic enteritis(NE)is a major enteric disease in poultry,yet effective mitigation strategies remain elusive.Deoxycholic acid(DCA)and butyrate,two major metabolites derived from the intestinal microbiota,have independently been shown to induce host defense peptide(HDP)synthesis.However,the potential synergy between these two compounds remains unexplored.Methods To investigate the possible synergistic effect between DCA and butyrate in regulating HDP synthesis and barrier function,we treated chicken HD11 macrophage cells and jejunal explants with DCA and sodium butyrate(NaB),either individually or in combination,for 24 h.Subsequently,we performed RNA isolation and reverse transcrip-tion-quantitative PCR to analyze HDP genes as well as the major genes associated with barrier function.To further determine the synergy between DCA and NaB in enhancing NE resistance,we conducted two independent trials with Cobb broiler chicks.In each trial,the diet was supplemented with DCA or NaB on the day-of-hatch,followed by NE induction through sequential challenges with Eimeria maxima and Clostridium perfringens on d 10 and 14,respectively.We recorded animal mortality after infection and assessed intestinal lesions on d 17.The impact of DCA and NaB on the microbiota in the ileum and cecum was evaluated through bacterial 16S rRNA gene sequencing.Results We found that the combination of DCA and NaB synergistically induced multiple HDP genes in both chicken HD11 cells and jejunal explants.Additionally,the gene for claudin-1,a major tight junction protein,also exhibited synergistic induction in response to DCA and NaB.Furthermore,dietary supplementation with a combination of 0.75 g/kg DCA and 1 g/kg NaB led to a significant improvement in animal survival and a reduction in intestinal lesions compared to either compound alone in a chicken model of NE.Notably,the cecal microbiota of NE-infected chickens showed a marked decrease in SCFA-producing bacteria such as Bacteroides,Faecalibacterium,and Cuneatibacter,with lactobacilli becoming the most dominant species.However,supplementation with DCA and NaB largely restored the intestinal microbiota to healthy levels.Conclusions DCA synergizes with NaB to induce HDP and claudin-1 expression and enhance NE resistance,with potential for further development as cost-effective antibiotic alternatives.展开更多
Objective: This paper aims to investigate the effect of applying recombinant human brain natriuretic peptide in patients with heart failure combined with hypotension. Recombinant human brain natriuretic peptide is a s...Objective: This paper aims to investigate the effect of applying recombinant human brain natriuretic peptide in patients with heart failure combined with hypotension. Recombinant human brain natriuretic peptide is a synthetic polypeptide drug that is primarily used to treat acute heart failure. Its mechanism of action closely mimics that of human endogenous brain natriuretic peptide. By binding to receptors on cardiomyocytes, it exerts its pharmacological effects. Methods: For the study, 76 heart failure patients with hypotension were selected from our hospital between May 2022 and June 2023. These patients were divided into two groups: a control group and an observation group, each comprising 38 patients. The control group received dopamine treatment, while the observation group was treated with recombinant brain natriuretic peptide. The objective was to compare the effects of the treatments in both groups by analyzing cardiac function indices and levels of vasoactive substances to identify any significant differences in outcomes. Results: The overall response rate of the patients in the observation group and the control group was 94.74% and 73.68%, significantly higher as compared with the observation group (P 0.05). After the following treatment, BNP, ANNP and urine output in the observation group were significantly different compared with the control group, of the statistical significance (P Conclusion: For the treatment of heart failure patients with hypotension, the clinical application of recombinant human brain natriuretic peptide is the most ideal, and significantly improves the cardiac function of patients, which is worth popularizing.展开更多
Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanis...Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.展开更多
基金supported by the Yunnan Key Project of Science and Technology(202202AE090001)Postdoctoral Directional Training Foundation of Yunnan Province(E23174K2)Postdoctoral Research Funding Projects of Yunnan Province,China(E2313442)。
文摘Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.
基金supported by the National Key Research and Development Program of China:Investigate the mechanism of formation and control technologies of Chinese traditional and ethnic food quality(2021YFD2100100)。
文摘Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
文摘HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules,characterized by their hollow structures,demonstrated potential as carriers for targeted drug delivery.1 Introduction Peptide nanocapsules are a type of nanoscale delivery system that encapsulates active substances within a shell composed of peptides,leveraging the unique properties of peptides such as biocompatibility and biodegradability[1].Historically,the development of peptide nanocapsules was inspired primordially by the natural biological processes.
基金supported by the National Natural Science Foundation of China(32272319,31972020,32202032)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in the neuroprotection mechanism remains to be elucidated.In this study,RNA-sequencing and miRNA-sequencing were used to independently identify differentially expressed mRNAs and small RNAs profiles in Pb^(2+)-treated primary fetal rat cortical neurons and then the correlated miRNA-mRNA target pairs were obtained.It was found that 34 mRNAs related to oxidative phosphorylation could be reversed by pretreatment of TSeMMM and SeMDPGQQ.The protective effect of TSeMMM and SeMDPGQQ was mediated by upregulation of miR-107-3p,which downregulates the ATPase H+transporting V0 subunit e1(Atp6v0e1)mRNA level.A zebrafish model was applied to verify the relevance between the targeted mRNA and miRNA by real-time quantitative PCR.The results indicated that miR-107-3p was a potential therapeutic target to achieve neuroprotection of Se-containing peptides via stimulation of Atp6v0e1.
基金supported by the National Key Research and Development Program of China (2021YFD2100402)the National Natural Science Foundation of China (81903275)the Fund of the Cultivation Project of Double First-Class Disciplines of Food Science and Engineering,Beijing Technology&Business University (BTBUYXTD202203)。
文摘Globally,the prevalence of anxiety and depression has reached epidemic proportions.Food-derived protein hydrolysates and peptides delivered through dietary supplementation can avoid the negative risks associated with traditional pharmaceuticals while delivering superior anxiolytic and antidepressant effects.This review summarizes current research on food-derived anxiolytic and antidepressant protein hydrolysates and peptides,and subsequently analyses their physicochemical characteristics and elaborates on their mechanisms.The aim of this work is to contribute to the in-depth study and provide a theoretical foundation for the development of related products to better serve patients with anxiety and depression.
基金sponsored by the National Natural Science Foundation China(32270115)National Key R&D Program of China(2018YFD0901102)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang(SJLY2021015)K.C.Wong Magna Fund of Ningbo University。
文摘Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.
基金supported by the European Union Grant Alehoop(H2020-BBIJTI-2019-887259)And from the Xunta de Galicia(Centro singular de Investigación de Galicia accreditation 2016-2019),ED431 G/02(to FM)。
文摘The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues,including diffe rent brain regions.Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection,like the support of cell growth/survival,enhancement promotion of synapse formation,autophagy,and inhibition of the secretion of proinflammatory cytokines,microglial activation,and apoptosis during neural morphogenesis.The glial cells,including astrocytes and microglia,maintain metabolic homeostasis and defe nse against pathogens in the central nervous system.After brain insult,microglia are the first cells to respond,followed by reactive astrocytosis.These activated cells produce proinflammato ry mediators like cytokines or chemokines to react to the insult.Furthermore,under these circumstances,mic roglia can become chro nically inflammatory by losing their homeostatic molecular signature and,consequently,their functions during many diseases.Several processes promote the development of neurological disorders and influence their pathological evolution:like the formation of protein aggregates,the accumulation of abnormally modified cellular constituents,the formation and release by injured neurons or synapses of molecules that can dampen neural function,and,of critical impo rtance,the dysregulation of inflammato ry control mechanisms.The glucagonlike peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies,restoring brain cell homeostasis under inflammatory conditions,modulating mic roglia activity,and decreasing the inflammato ry response.This review summarizes recent advances linked to the anti-inflammato ry prope rties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis,Alzheimer’s disease,Parkinson’s disease,vascular dementia,or chronic migraine.
基金This work was funded by National Natural Science Foundation of China(32272279)the Key R&D project of Qingdao Science and Technology Plan(22-3-3-hygg-29-hy).
文摘Alpha-lactalbumin(α-LA)is a major whey protein found in breast milk and plays a crucial role in the growth and development of infants.In this study,Bacillus subtilis RIK1285 harboring AprE signal peptide(SP)was selected as the original strain for the production ofα-LA.It was found thatα-LA was identified in the pellet after ultrasonic disruption and centrifugation instead of in the fermentation supernatant.The original strain most likely only producedα-LA intracellular,but not extracellular.To improve the expression and secretion ofα-LA in RIK1285,a library of 173 homologous SPs from the B.subtilis 168 genome was fused with target LALBA gene in the pBE-S vector and expressed extracellularly in RIK1285.SP YjcN was determined to be the best signal peptide.Bands in supernatant were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and purified by nickel column to calculate the highest yield signal peptide.In addition,different promoters(P_(aprE),P_(43),and P_(glv))were compared and applied.The results indicated that the strain RIK1285-pBE-P_(glv)-YjcN-LALBA had the highestα-LA yield,reaching 122.04μg/mL.This study demonstrates successful expression and secretion of humanα-LA in B.subtilis and establishes a foundation for simulating breast milk for infant formulas and developing bioengineered milk.
基金supported by the grant from the Natural Science Foundation of China(No.31900214 to JY)the Open Fund of State Key Laboratory of Tea Plant Biology and Utilization(SKLTOF20210113 to LL).
文摘Rhizobia induces nitrogen-fixing nodules in legumes used in agricultural production,providing a direct source of combined nitrogen to leguminous crops.Small peptides,such as CLAVATA3/EMBRYO SURROUNDING REGION peptides(CLE),are known to regulate the formation and development of nitrogen-fixing nodules in legumes.Root meristem growth factor(RGF)peptides from Medicago truncatula not only regulate root develop-ment but also modulate nodulation symbiosis with Sinorhizobium meliloti.However,the impact of RGF peptides from one leguminous species on the others remains unclear.In this study,we investigate the effects of the RGF family peptide MtRGF6p from M.truncatula on nodulation symbiosis and root development in Lotus japonicus.The MtRGF6 gene is predominantly expressed in the root nodules of M.truncatula and shows low identity with RGF homologous genes from L.japonicus.The gene promoter is active in the primordia of root nodules and lat-eral roots,as well as in young nodules and roots,and the meristem,infection,and nitrogen-fixing regions of the mature nodule.Chemically synthesized MtRGF6p promoted primary root growth in M.truncatula but sup-pressed the growth of L.japonicus primary roots.The peptide negatively affected the initiation of nodule primor-dia,the formation of infection threads,and nodulation in both legumes,with a low dosage showing effects on L.japonicus compared to M.truncatula.These results suggest that the MtRGF6 peptide from M.truncatula may serve as an inter-species signal affecting the root organ development of L.japonicus.
基金supported by the National Natural Science Foundation of China(31772476 and 31911530077 to X.X.,81870991 and U1603281 to S.Q.)Guangdong Basic and Applied Basic Research Foundation(2023A1515010914 to X.X.)Natural Science Foundation of Guangdong Province(2022A1515010352 to S.Q.)。
文摘Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.
基金supported by the National Natural Science Foundation of China(82072148)Zhejiang Provincial Basic Public Welfare Research Program of Zhejiang Province(LGF21H150002)+1 种基金Zhejiang Medicine and Health Science and Technology Project(2022RC245&2023KY255)Ningbo Municipal Natural Science Foundation(2023J134).
文摘BACKGROUND:Streptococcus pneumoniae(S.pneumoniae)is a common pathogen that causes bacterial pneumonia.However,with increasing bacterial resistance,there is an urgent need to develop new drugs to treat S.pneumoniae infections.Nanodefensin with a 14-carbon saturated fatty acid(ND-C14)is a novel nanoantimicrobial peptide designed by modifying myristic acid at the C-terminus of humanα-defensin 5(HD5)via an amide bond.However,it is unclear whether ND-C14 is effective against lung infections caused by S.pneumoniae.METHODS:In vitro,three groups were established,including the control group,and the HD5 and ND-C14 treatment groups.A virtual colony-count assay was used to evaluate the antibacterial activity of HD5 and ND-C14 against S.pneumoniae.The morphological changes of S.pneumoniae treated with HD5 or ND-C14 were observed by scanning electron microscopy.In vivo,mice were divided into sham,vehicle,and ND-C14 treatment groups.Mice in the sham group were treated with 25μL of phosphate-buffered saline(PBS).Mice in the vehicle and ND-C14 treatment groups were treated with intratracheal instillation of 25μL of bacterial suspension with 2×108 CFU/mL(total bacterial count:5×10^(6) CFU),and then the mice were given 25μL PBS or intratracheally injected with 25μL of ND-C14(including 20μg or 50μg),respectively.Survival rates were evaluated in the vehicle and ND-C14 treatment groups.Bacterial burden in the blood and bronchoalveolar lavage fluid were counted.The lung histology of the mice was assessed.A propidium iodide uptake assay was used to clarify the destructive eff ect of ND-C14 against S.pneumoniae.RESULTS:Compared with HD5,ND-C14 had a better bactericidal eff ect against S.pneumoniae because of its stronger ability to destroy the membrane structure of S.pneumoniae in vitro.In vivo,ND-C14 significantly delayed the death time and improved the survival rate of mice infected with S.pneumoniae.ND-C14 reduced bacterial burden and lung tissue injury.Moreover,ND-C14 had a membrane permeation eff ect on S.pneumoniae,and its destructive ability increased with increasing ND-C14 concentration.CONCLUSION:The ND-C14 may improve bactericidal eff ects on S.pneumoniae both in vitro and in vivo.
基金supported by the National Natural Science Foundation of China(No.31901635)。
文摘The angiotensin-converting enzyme(ACE)inhibitory peptide NCW derived from Mizuhopecten yessoensis has been demonstrated to have significant in vivo anti-hypertensive effects,however,its anti-hypertensive mechanism is still not fully clarified.This study established a UPLC-Q-TRAP-MS/MS-based widely targeted kidney metabolomics approach to explore the changes of kidney metabolic profiles and to clarify the antihypertensive mechanism of peptide NCW in spontaneously hypertensive rats(SHRs).Multivariate statistical analysis indicated that the kidney metabolic profiles were clearly separated between the SHR-NCW and SHRUntreated groups.A total of 85 metabolites were differentially regulated,and 16 metabolites were identified as potential kidney biomarkers,e.g.,3-hydroxybutyrate,malonic acid,deoxycytidine,and L-aspartic acid.The peptide NCW might regulate kidney metabolic disorder of SHRs to alleviate hypertension by suppressing inflammation and improving nitric oxide production under the regulation of linoleic acid metabolism,folate related pathways,synthesis and degradation of ketone bodies,pyrimidine metabolism,β-alanine metabolism,and retinal metabolism.
基金funded by Natural Science Foundation of Shanghai,China(No.23ZR1426100)SAAS program for Excellent Research Team(No.G202203)。
文摘The taste presentation and receptor perception mechanism of the salty peptide of Stropharia rugosoannulata were predicted and verified using peptide omics and molecular interaction techniques.The combination of aspartic acid(D)and glutamic acid(E),or peptide fragments composed of arginine(R),constitute the characteristic taste structural basis of salty peptides of S.rugosoannulata.The taste intensity of the salty peptide positively correlates with its concentration within a specific concentration range(0.25–1.0 mg/mL).The receptor more easily recognizes the first amino acid residue at the N-terminal of salty peptides and the aspartic acid residue in the peptides.GLU513,ASP707,and VAL508 are the critical amino acid residues for the receptor to recognize salty peptides.TRPV1 is specifically the receptor for recognizing salty peptides.Hydrogen bonds and electrostatic interactions are the main driving forces for the interactions between salty peptides and TRPV1 receptors.KSWDDFFTR has the most potent binding capacity with the receptor and has tremendous potential for application in sodium salt substitution.This study confirmed the taste receptor that specifically recognizes salty peptides,analyzed the receptor-peptide binding interaction,and provided a new idea for understanding the taste receptor perception of salty peptides.
基金supported by the grants from the National Natural Science Foundation of China(Nos.81773566 and 21602092)Innovation Project of Medicine and Health Science and Technology of Chinese Academy of Medical Sciences(2019-I2M-5-074)+1 种基金the Funds for Fundamental Research Creative Groups of Gansu Province(No.20JR5RA310)the Fundamental Research Funds for the Central Universities(No.lzujbky-2021-38).
文摘Melittin,a classical antimicrobial peptide,is a highly potent antitumor agent.However,its significant toxicity seriously hampers its application in tumor therapy.In this study,we developed novel melittin analogs with pH-responsive,cell-penetrating and membranelytic activities by replacing arginine and lysine with histidine.After conjugation with camptothecin(CPT),CPT-AAM-1 and CPT-AAM-2 were capable of killing tumor cells by releasing CPT at low concentrations and disrupting cell membranes at high concentrations under acidic conditions.Notably,we found that the C-terminus of the melittin analogs was more suitable for drug conjugation than the N-terminus.CPT-AAM-1 significantly suppressed melanoma growth in vivo with relatively low toxicity.Collectively,the present study demonstrates that the development of antitumor drugs based on pH-responsive antimicrobial peptide-drug conjugates is a promising strategy.
基金This work received funding from the State of São Paulo Research Foundation(FAPESP)and the Coordination for the Improvement of Higher Education Personnel(CAPES)under Finance Code 001.
文摘Venom snake-derived peptides have multiple biochemical,pharmacological,and toxicological profiles,allowing for the discovery of new medicinal products and therapeutic applications.This review specifically examines the fundamental elements of neuroprotection offered by different oligopeptides derived from snake venom.It also includes a brief evaluation of short peptides that are being considered as potential therapeutic agents.Proline-rich peptides and tryptophyllin family peptides isolated from the crude venom of Viperidae family snakes,specifically Bothrops atrox,Bothrops jararaca,and Bothrops moojeni,have been shown to have pro-survival properties,the ability to reduce oxidative stress,and the ability to promote cell viability and mitochondrial functions.Three significant mechanisms are related to the neuroprotection mediated by snake venom oligopeptides:(1)Activation of the L-arginine metabolite pathway,such as polyamines from ornithine metabolism,which reduces N-methyl-D-aspartate(NMDA)-type glutamate receptor activity;(2)Enhancement of cell viability by activating the nerve growth factor-signaling pathway;and(3)Activation of the Muscarinic acetylcholine receptor subtype M1(mAChR-M1).These small peptides show promise as neuroprotective agents against a variety of neurodegenerative disorders.
基金supported by the USDA National Institute of Food and Agriculture grants (2020-67016-31619 and 2023-67015-39095)the Ralph F. and Leila W. Boulware Endowment Fund+1 种基金Oklahoma Agricultural Experiment Station Project H-3112supported by a USDA National Institute of Food and Agriculture Predoctoral Fellowship grant (2021-67034-35184)
文摘Background Necrotic enteritis(NE)is a major enteric disease in poultry,yet effective mitigation strategies remain elusive.Deoxycholic acid(DCA)and butyrate,two major metabolites derived from the intestinal microbiota,have independently been shown to induce host defense peptide(HDP)synthesis.However,the potential synergy between these two compounds remains unexplored.Methods To investigate the possible synergistic effect between DCA and butyrate in regulating HDP synthesis and barrier function,we treated chicken HD11 macrophage cells and jejunal explants with DCA and sodium butyrate(NaB),either individually or in combination,for 24 h.Subsequently,we performed RNA isolation and reverse transcrip-tion-quantitative PCR to analyze HDP genes as well as the major genes associated with barrier function.To further determine the synergy between DCA and NaB in enhancing NE resistance,we conducted two independent trials with Cobb broiler chicks.In each trial,the diet was supplemented with DCA or NaB on the day-of-hatch,followed by NE induction through sequential challenges with Eimeria maxima and Clostridium perfringens on d 10 and 14,respectively.We recorded animal mortality after infection and assessed intestinal lesions on d 17.The impact of DCA and NaB on the microbiota in the ileum and cecum was evaluated through bacterial 16S rRNA gene sequencing.Results We found that the combination of DCA and NaB synergistically induced multiple HDP genes in both chicken HD11 cells and jejunal explants.Additionally,the gene for claudin-1,a major tight junction protein,also exhibited synergistic induction in response to DCA and NaB.Furthermore,dietary supplementation with a combination of 0.75 g/kg DCA and 1 g/kg NaB led to a significant improvement in animal survival and a reduction in intestinal lesions compared to either compound alone in a chicken model of NE.Notably,the cecal microbiota of NE-infected chickens showed a marked decrease in SCFA-producing bacteria such as Bacteroides,Faecalibacterium,and Cuneatibacter,with lactobacilli becoming the most dominant species.However,supplementation with DCA and NaB largely restored the intestinal microbiota to healthy levels.Conclusions DCA synergizes with NaB to induce HDP and claudin-1 expression and enhance NE resistance,with potential for further development as cost-effective antibiotic alternatives.
文摘Objective: This paper aims to investigate the effect of applying recombinant human brain natriuretic peptide in patients with heart failure combined with hypotension. Recombinant human brain natriuretic peptide is a synthetic polypeptide drug that is primarily used to treat acute heart failure. Its mechanism of action closely mimics that of human endogenous brain natriuretic peptide. By binding to receptors on cardiomyocytes, it exerts its pharmacological effects. Methods: For the study, 76 heart failure patients with hypotension were selected from our hospital between May 2022 and June 2023. These patients were divided into two groups: a control group and an observation group, each comprising 38 patients. The control group received dopamine treatment, while the observation group was treated with recombinant brain natriuretic peptide. The objective was to compare the effects of the treatments in both groups by analyzing cardiac function indices and levels of vasoactive substances to identify any significant differences in outcomes. Results: The overall response rate of the patients in the observation group and the control group was 94.74% and 73.68%, significantly higher as compared with the observation group (P 0.05). After the following treatment, BNP, ANNP and urine output in the observation group were significantly different compared with the control group, of the statistical significance (P Conclusion: For the treatment of heart failure patients with hypotension, the clinical application of recombinant human brain natriuretic peptide is the most ideal, and significantly improves the cardiac function of patients, which is worth popularizing.
基金financially supported by Shenzhen Agricultural Development Special Fund(Fishery)Agricultural High-Tech Project([2021]735)the Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)Youth Science Foundation Project(32101936)。
文摘Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.